山東省機(jī)動車污染物排放演變研究
本文選題:機(jī)動車 + 排放清單 ; 參考:《濟(jì)南大學(xué)》2017年碩士論文
【摘要】:改革開放以來,山東省機(jī)動車保有量逐年攀升,由此引發(fā)的區(qū)域復(fù)合型大氣污染已成為當(dāng)?shù)孛媾R的典型而嚴(yán)峻的環(huán)境問題。建立山東省機(jī)動車排放清單是把握當(dāng)?shù)貦C(jī)動車污染特征、識別影響機(jī)動車排放的關(guān)鍵因素、制定合理有效的機(jī)動車排放控制措施的基礎(chǔ)。本文綜合考慮山東省機(jī)動車地域特點(diǎn)建立了山東省2000~2014年機(jī)動車排放清單,并分析了區(qū)域內(nèi)機(jī)動車的排放特征;運(yùn)用LMDI法構(gòu)建了機(jī)動車排放因素分解模型,考察了技術(shù)效應(yīng)、里程效應(yīng)、結(jié)構(gòu)效應(yīng)和規(guī)模效應(yīng)對機(jī)動車排放的貢獻(xiàn);最后基于情景分析法,預(yù)測了山東省2020年機(jī)動車的排放狀況,評價了各類控制措施的削減效果與協(xié)同效應(yīng)。本文的主要研究結(jié)論如下:排放清單結(jié)果表明研究期內(nèi)山東省機(jī)動車氮氧化物(NO_X)、可吸入顆粒物(PM_(10))、二氧化碳(CO_2)、甲烷(CH_4)和氧化亞氮(N_2O)的排放量分別從17.70、1.24、1923.97、1.13和0.61萬噸上升至51.38、2.95、13841.95、1.53和3.87萬噸,一氧化碳(CO)、非甲烷揮發(fā)性有機(jī)物(NMVOC)則分別由173.45和27.79萬噸下降至172.33和23.42萬噸。從排放總量趨勢來看,山東省機(jī)動車CO、NMVOC、CH_4的排放先增后降,NO_X和PM_(10)排放前期增長迅速后期增勢開始放緩,CO_2排放量一直處于高速增長狀態(tài),N_2O排放則表現(xiàn)出了波動增長的態(tài)勢。從車型貢獻(xiàn)來看,CO、NMVOC和CH_4的排放主要來源于輕型載客車和摩托車,NO_X和PM_(10)主要排放源為重型載貨車,CO_2的主要排放源是輕型載客車和重型載貨車,N_2O的排放則主要來自于輕型載客車與輕型載貨車。從地區(qū)分擔(dān)來看,污染物主要集中于濟(jì)南、青島、煙臺、濰坊、濟(jì)寧和臨沂,研究期內(nèi)機(jī)動車CO和NMVOC的排放在部分地區(qū)有所下降,NO_X和PM_(10)的排放在所有地區(qū)均有所上升。從空間分布來看,山東省機(jī)動車排放較高的區(qū)域集中在東部與中部,在空間上呈現(xiàn)出自市區(qū)向郊區(qū)的遞減趨勢。因素分解結(jié)果表明,N_2O中結(jié)構(gòu)效應(yīng)對排放增長累積貢獻(xiàn)最大,其他污染物中規(guī)模效應(yīng)則是排放最重要的驅(qū)動效應(yīng)。技術(shù)效應(yīng)對大部分污染物而言是非常重要的排放抑制效應(yīng)。規(guī)模效應(yīng)對各類污染物在所有年份都產(chǎn)生了驅(qū)動效應(yīng),且在初期對排放驅(qū)動的逐年效應(yīng)較大,在后期對排放增量的貢獻(xiàn)逐漸降低。多數(shù)情況下,技術(shù)效應(yīng)在初期表現(xiàn)較弱,后期對排放抑制的逐年效應(yīng)會有所上升。情景分析結(jié)果表明,基準(zhǔn)情景下2020年山東省機(jī)動車CO、NMVOC、NO_X、PM_(10)、CO_2、CH_4、N_2O的排放量分別為142.91、20.9、62.71、3.37、23047.07、1.58、0.51萬噸。單一控制措施情景中提高排放標(biāo)準(zhǔn)和老舊車輛淘汰的減排效果較為明顯,常規(guī)控制措施情景能有效減少多數(shù)污染物的排放,綜合控制措施情景則可以達(dá)到最佳的減排效果。協(xié)同效應(yīng)評價顯示提高排放標(biāo)準(zhǔn)和老舊車輛淘汰對傳統(tǒng)污染物的減排效果要強(qiáng)于對溫室氣體的減排,公共交通普及、新能源車推廣和行駛條件改善對溫室氣體的減排效果要比對傳統(tǒng)污染物更好。常規(guī)控制措施情景和綜合控制措施情景對傳統(tǒng)污染物的減排效果都強(qiáng)于對溫室氣體的減排,但綜合控制措施情景的協(xié)同效應(yīng)要好于常規(guī)控制措施情景。
[Abstract]:Since the reform and opening up, the number of motor vehicles in Shandong has been increasing year by year. The resulting regional complex air pollution has become a typical and severe environmental problem in the local area. To establish a vehicle emission inventory in Shandong province is to grasp the characteristics of the local motor vehicle pollution, to identify the key factors affecting the emission of motor vehicles, and to formulate a reasonable and effective maneuver. On the basis of the vehicle emission control measures, in this paper, the vehicle emission list in Shandong province for 2000~2014 was established in Shandong Province, and the vehicle emission characteristics in the region were analyzed. The vehicle emission factor decomposition model was constructed by LMDI method, and the technical effect, the mileage effect, the structure effect and the scale effect were investigated. The contribution of motor vehicle emission; finally, based on the scenario analysis method, the vehicle emission status in Shandong Province in 2020 was predicted and the reduction effect and synergistic effect of various control measures were evaluated. The main conclusions of this paper are as follows: the emission inventory results show that in the study period, the nitrogen oxides (NO_X), inhalable particles (PM_ (10)), and two of the motor vehicles (10), two. Carbon oxide (CO_2), methane (CH_4) and Nitrous Oxide (N_2O) emissions increased from 17.70,1.241923.97,1.13 and 6 thousand and 100 tons to 51.38,2.9513841.95,1.53 and 38 thousand and 700 tons, carbon monoxide (CO) and non methane volatile organic compounds (NMVOC) from 173.45 and 277 thousand and 900 tons to 172.33 and 234 thousand and 200 tons, respectively. The emission of CO, NMVOC, CH_4 of motor vehicles in East Province increased first and then decreased, the increase of NO_X and PM_ (10) emissions began to slow down in the early stage of rapid growth, CO_2 emission was in a high speed growth state and N_2O emissions showed a trend of fluctuation. From the model contribution, the emissions of CO, NMVOC and CH_4 mainly came from light passenger cars and motorcycles, NO_X The main emission source of PM_ (10) is heavy truck. The main source of CO_2 emission is light carrier and heavy truck. The emission of N_2O mainly comes from light carrier and light truck. From the point of view of Regional Sharing, the pollutants are mainly concentrated in Ji'nan, Qingdao, Yantai, Weifang, Jining and Linyi, and the emission of vehicle CO and NMVOC during the study period. In some areas, the emission of NO_X and PM_ (10) increased in all regions. From the view of spatial distribution, the higher emission areas of motor vehicles in Shandong were concentrated in the East and the middle part, which showed a decreasing trend from the urban to the suburbs. The result of factor decomposition showed that the structural effect in N_2O contributed most to the accumulation of emissions. Large, scale effect in other pollutants is the most important driving effect of emission. Technical effect is a very important emission inhibition effect for most pollutants. Scale effect has a driving effect on all kinds of pollutants in all years, and the annual effect on emissions driven in the early stage is larger, and the contribution to the release increment in the later period is great. In most cases, the effect of technical effect is weaker in the early stage, and the effect of the later year on emission suppression will rise. The results of the scenario analysis show that the emission of CO, NMVOC, NO_X, PM_ (10), CO_2, CH_4, N_2O in 2020 under the baseline scenario is divided into 142.91,20.9,62.71,3.3723047.07,1.58,0.51 million tons. The effect of emission standard and old vehicle elimination is more obvious in the situation. The situation of conventional control measures can effectively reduce the emission of most of the pollutants. The situation of comprehensive control measures can achieve the best effect of emission reduction. The synergistic effect evaluation shows that the emission standards and the elimination of the old vehicles to the traditional pollutant emission reduction are improved. The effect is better than the emission reduction of greenhouse gases, public transportation is popularized, the effect of the promotion and driving conditions of new energy vehicles on greenhouse gas emission reduction is better than that of the traditional pollutants. The effect of conventional control measures and comprehensive control measures on the emission reduction of traditional pollutants is better than the emission reduction of greenhouse gases, but the comprehensive control measures are taken. The synergy effect of scenarios is better than that of conventional control measures.
【學(xué)位授予單位】:濟(jì)南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X734.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王慧慧;曾維華;吳開亞;;上海市機(jī)動車尾氣排放協(xié)同控制效應(yīng)研究[J];中國環(huán)境科學(xué);2016年05期
2 張啟鈞;吳琳;毛洪鈞;李東;滕杰;;機(jī)動車尾氣顆粒物采樣測試方法及其應(yīng)用[J];環(huán)境污染與防治;2015年12期
3 喻潔;達(dá)亞彬;歐陽斌;;基于LMDI分解方法的中國交通運(yùn)輸行業(yè)碳排放變化分析[J];中國公路學(xué)報;2015年10期
4 李倩;曹國良;董燦;呂巖;;基于情景分析的中國大陸SO_2、NO_X排放清單預(yù)測研究[J];環(huán)境污染與防治;2015年09期
5 樊守彬;田靈娣;張東旭;曲松;;北京市機(jī)動車尾氣排放因子研究[J];環(huán)境科學(xué);2015年07期
6 馬品;曹生現(xiàn);劉永紅;黃建彰;;2006—2012年廣東省機(jī)動車尾氣排放特征及變化規(guī)律[J];環(huán)境科學(xué)研究;2015年06期
7 弓媛媛;;武漢市交通碳排放足跡測算及其驅(qū)動因素分析[J];中國人口·資源與環(huán)境;2015年S1期
8 趙選民;卞騰銳;;基于LMDI的能源消費(fèi)碳排放因素分解——以陜西省為例[J];經(jīng)濟(jì)問題;2015年02期
9 王媛;賈皎皎;趙鵬;程曦;孫韜;;LMDI方法分析結(jié)構(gòu)效應(yīng)對天津市碳排放的影響及對策[J];天津大學(xué)學(xué)報(社會科學(xué)版);2014年06期
10 何立強(qiáng);宋敬浩;胡京南;解淑霞;祖雷;;輕型汽油車CH_4和N_2O排放因子研究[J];環(huán)境科學(xué);2014年12期
相關(guān)碩士學(xué)位論文 前4條
1 池莉;基于LEAP模型的北京市未來客運(yùn)交通能源需求和污染物排放預(yù)測[D];北京交通大學(xué);2014年
2 李新興;杭州市道路機(jī)動車污染物排放特征及減排策略研究[D];浙江大學(xué);2013年
3 李丹;西安市機(jī)動車排放因子研究[D];長安大學(xué);2011年
4 馬寧;重慶市主城區(qū)機(jī)動車污染狀況與分擔(dān)率研究[D];重慶大學(xué);2008年
,本文編號:2077802
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2077802.html