天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

重慶主城區(qū)大氣污染物時空變化及影響因素分析

發(fā)布時間:2018-06-24 19:20

  本文選題:大氣污染物 + 時空變化; 參考:《重慶師范大學》2017年碩士論文


【摘要】:日益嚴重的城市大氣污染,給生態(tài)環(huán)境和人類健康帶來了嚴重的危害。重慶主城區(qū)是典型的山地城市,由于其特殊的山地地形和氣象條件等因素綜合影響,大氣污染擴散緩慢。本文利用重慶主城區(qū)2015-2016年17個大氣環(huán)境質量監(jiān)測站點的大氣污染物濃度數(shù)據(jù)以及同期虎溪鎮(zhèn)氣象站的氣象數(shù)據(jù),綜合運用小波變換、空間插值、軌跡聚類等方法,分別從不同的時間尺度和空間尺度對主城區(qū)大氣污染物的時空變化特征及其影響因素進行了研究。得出了如下的研究結果:1除O_3外,重慶主城區(qū)大氣污染物的逐日變化趨勢多呈U型。大氣顆粒物濃度的逐月變化趨勢為“單峰單谷”型,高濃度月份主要是1和2月,低濃度月份為7和8月。NO_2、SO_2、CO濃度變化趨勢相對較為平緩,濃度高值與低值出現(xiàn)月份與顆粒物出現(xiàn)月份相近;O_3濃度大致呈雙峰型變化趨勢。季節(jié)變化特征方面,除O_3外,其他均呈現(xiàn)出冬季高,夏季低的特征。顆粒物濃度大小為冬春秋夏,NO_2、SO_2、CO濃度大小排序為冬秋春夏,O_3則正好相反。小波分析結果來看,2015年-2016年間,PM_(2.5)和PM_(10)均存在五個尺度的周期變化規(guī)律,第一主周期為183d左右。NO_2、SO_2、CO和O_3均有3類以上的周期變化規(guī)律,第一主周期分別為183d、182d、181d和161d。2重慶主城區(qū)PM_(2.5)、PM_(10)、NO_2濃度空間分布上表現(xiàn)為南高北低,高值區(qū)主要集中在城區(qū)中西部,低值區(qū)主要在西北部的縉云山和北部的城市郊區(qū)。SO_2空間分布表現(xiàn)為由南向北逐漸遞減,南部高值區(qū)主要在巴南區(qū)的西南部。CO濃度呈破碎狀的塊狀分布,濃度低值區(qū)出現(xiàn)的地方多為山地地形。O_3濃度空間分布情況正好與NO_2相反,西北高,中西部濃度低。不同季節(jié)的空間分布上,PM_(2.5)濃度空間分布特征主要表現(xiàn)為中部城區(qū)濃度偏高,西北部及城市郊區(qū)濃度偏低,濃度差異冬高夏低。O_3濃度分布情況與PM_(2.5)正好相反。3人口密度、房屋建筑面積與PM_(2.5)、PM_(10)、NO_2呈顯著正相關,與O_3、SO_2以及CO多呈負相關;而與交通公路里程雖呈負相關,但相關性不顯著。PM_(2.5)、PM_(10)、NO_2、SO_2、CO與大氣溫度、濕度、總輻射、降水量以及風速呈負相關,與大氣壓強、風向呈正相關。在日降水量不足5mm時,清除能力較小;超過5mm時,清除能力隨降雨量增大而增大。夏季降水強度的總體平均清除率由小到大依次為O_3NO_2PM_(2.5)SO_2PM_(10)。5h以下時長降水對大氣污染物的平均清除率為負;5~10h、10~15h和15~20h時長降水分別對PM_(10)、NO_2和SO_2的平均清除率最高。夏季降水時長的總體平均清除率大小依次為SO_2PM_(10)NO_2PM_(2.5)O_3。累積降水量大小與顆粒物濃度多呈顯著負相關。4軌跡聚類分析結果來看,西部方向的軌跡4為主城區(qū)冬季的主要輸送路徑,氣流軌跡數(shù)量占總軌跡數(shù)的54.95%。冬季污染物濃度主要受來自西藏、四川等氣流輸送的影響,但重慶地區(qū)的本地污染源排放的影響仍不可忽視。三次重污染過程中,空氣污染主要受來自于近地面運行路程較短、移動速度較慢的西南氣團、西北和東南氣團影響。
[Abstract]:The increasingly serious urban air pollution has brought serious harm to the ecological environment and human health. The main city of Chongqing is a typical mountain city. The atmospheric pollution is slow to spread because of its special mountainous terrain and meteorological conditions. This paper uses the 17 atmospheric environmental quality monitoring stations in the main city of Chongqing for 2015-2016 years. The atmospheric pollutant concentration data and the meteorological data of the meteorological station in the same period have been studied by the methods of wavelet transform, spatial interpolation and trajectory clustering. The spatial and temporal characteristics of air pollutants in the main urban area and its influencing factors are studied from different time scales and spatial scales. The following results are obtained: 1 O_3 In addition, the daily change trend of air pollutants in the main urban area of Chongqing is mostly U type. The monthly change trend of atmospheric particulates concentration is "single peak single valley" type. The month of high concentration is mainly 1 and February, the month of low concentration is 7 and August, and the change trend of SO_2, CO concentration is relatively gentle, and the high and low concentration month and the month of particles appear in the month of high concentration and low value. The concentration of O_3 is approximately the trend of Shuangfeng type. In terms of seasonal variation, except O_3, all other features are high in winter and low in summer. The concentration of particles is in winter, spring and autumn, NO_2, SO_2, and CO concentration is in winter and autumn in spring and summer, and O_3 is just the opposite. The results of wavelet analysis showed that PM_ (2.5) and PM_ (10) were stored in -2016 in 2015. In the periodic variation of five scales, the first principal period is about 183d.NO_2, SO_2, CO and O_3 have more than 3 kinds of periodic variation. The first main period is 183d, 182d, 181d and 161d.2 Chongqing main city region PM_ (2.5), PM_ (10), and the spatial distribution of NO_2 concentration is low in South High North, and the high value area is mainly concentrated in the Midwest, low value area of urban area. The spatial distribution of.SO_2 spatial distribution in the north-west Jinyun Mountain and the northern suburb is gradually decreasing from south to north. The South high value area is mainly in the southwestern part of the Banan region, the concentration of.CO in the southwestern part of the Banan region is fractured and massive. The location of the low concentration area is mostly the spatial distribution of the.O_3 concentration in the mountain terrain, which is opposite to the NO_2, the northwest is high, the West and the West are high. The spatial distribution of PM_ (2.5) concentration in different seasons showed that the concentration of the concentration in the central urban area was high, the concentration in the northwest and the suburb was low, the concentration difference between the winter high summer and the low.O_3 concentration and the PM_ (2.5) was just the opposite of the.3 population density, and the building area was significantly positively correlated with PM_ (2.5), PM_ (10), and NO_2. Negative correlation with O_3, SO_2 and CO, but negative correlation with traffic road mileage, but the correlation is not significant.PM_ (2.5), PM_ (10), NO_2, SO_2, CO are negatively correlated with atmospheric temperature, humidity, total radiation, precipitation and wind speed, and are positively correlated with atmospheric pressure and wind direction. When the daily precipitation is less than 5mm, the ability to scavenge is smaller than 5mm, clearance energy exceeds 5mm. The average scavenging rate of precipitation intensity in summer is O_3NO_2PM_ (2.5) SO_2PM_ (10).5h and the average clearance of precipitation is negative for atmospheric pollutants, and the average removal rate of PM_ (10), NO_2 and SO_2 is the highest in 5~10h, 10~15h and 15~20h. The average scavenging rate is SO_2PM_ (10) NO_2PM_ (2.5) O_3. cumulative precipitation and the concentration of particulate matter in a significant negative correlation.4 trajectory clustering analysis results, the western direction of the track 4 is the main transportation path in the main urban area in winter, and the concentration of air flow trajectory in the total number of 54.95%. in winter is mainly from Tibet, The impact of Sichuan and other airflow transport, but the impact of the local pollution sources in the Chongqing area can not be ignored. In the three heavy pollution process, air pollution is mainly affected by the south-west air mass, the southwest and the southeast air mass, which have short running distance in the near ground and slow moving speed.
【學位授予單位】:重慶師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X51

【參考文獻】

相關期刊論文 前10條

1 李皓;樊曙先;張悅;康博識;孫玉;;南京市區(qū)郊區(qū)大氣PM_(10)、PM_(2.1)中PAHs的分布特征及影響因素[J];中國環(huán)境科學;2017年01期

2 張淑平;韓立建;周偉奇;李偉峰;;城市規(guī)模對大氣污染物NO_2和PM_(2.5)濃度的影響[J];生態(tài)學報;2016年16期

3 孫春媛;李令軍;趙文吉;趙佳茵;;基于小波變換的北京市PM_(2.5)時空分布特征及成因分析[J];生態(tài)環(huán)境學報;2016年08期

4 王濤;霍彥峰;羅艷;;近300a來天山中西部降水與太陽活動的小波分析[J];干旱區(qū)研究;2016年04期

5 么相姝;王磊;;天津團泊洼地區(qū)SO_2和NO_2傳輸軌跡及來源識別[J];生態(tài)與農(nóng)村環(huán)境學報;2016年03期

6 婁彩榮;劉紅玉;李玉玲;李玉鳳;;大氣顆粒物(PM_(2.5)、PM_(10))對地表景觀結構的響應研究進展[J];生態(tài)學報;2016年21期

7 黃毅;劉春瓊;謝志輝;吳生虎;史凱;;基于后向軌跡模型的成都市典型灰霾期間PM_(2.5)演化的自組織分析[J];安全與環(huán)境學報;2016年01期

8 王濤;陳夢平;周夢翩;李晶;吳松峻;羅敏;夏忠歡;;無錫市區(qū)大氣污染物污染特征及影響因素研究[J];環(huán)境污染與防治;2015年12期

9 顧凱華;史紅仙;張帥;樊曙先;許建明;談建國;;上海崇明島近三年PM_(2.5)濃度變化特征與氣象條件的關系[J];長江流域資源與環(huán)境;2015年12期

10 王振波;方創(chuàng)琳;許光;潘月鵬;;2014年中國城市PM_(2.5)濃度的時空變化規(guī)律[J];地理學報;2015年11期

相關博士學位論文 前3條

1 黎麗莉;廣東氣溶膠光學厚度及穗深空氣污染物時空特征和影響因素研究[D];中國科學院研究生院(廣州地球化學研究所);2015年

2 周國兵;重慶市主城區(qū)氣象條件對空氣污染影響分析及數(shù)值模擬研究[D];蘭州大學;2014年

3 孫國金;機動車排放PM_(2.5)和NO_x的特征與減排對策[D];浙江大學;2013年

相關碩士學位論文 前6條

1 梁丹;重慶市PM_(2.5)污染分布特征及影響因素分析[D];北京林業(yè)大學;2016年

2 程雨萌;重慶市大氣顆粒物時空分布及影響因素[D];北京林業(yè)大學;2016年

3 趙冰清;重慶市大氣顆粒物時空變化及植物滯塵能力研究[D];北京林業(yè)大學;2015年

4 李淑婷;成都市大氣環(huán)境污染時空特征分析及質量評價[D];電子科技大學;2012年

5 王貝貝;跨奧運期間北京市細顆粒物(PM_(2.5))濃度變化特征及影響因素分析[D];山東師范大學;2011年

6 鄧銀燕;缺失數(shù)據(jù)的填充方法研究及實證分析[D];西北大學;2010年



本文編號:2062648

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2062648.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶08c88***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com