白腐菌的固定化及其對(duì)酸性黑ATT的脫色研究
本文選題:黃孢原毛平革菌 + 吸附固定化。 參考:《天津科技大學(xué)》2017年碩士論文
【摘要】:酸性黑ATT是典型的復(fù)合型偶氮染料,具有可生化性差、色度高、成分復(fù)雜、直接排放于環(huán)境中會(huì)造成嚴(yán)重污染等特點(diǎn),脫色處理成為處理該類廢水的關(guān)鍵環(huán)節(jié)。目前對(duì)于該類染料污染的廢水處理鮮有報(bào)道。本文將固定化技術(shù)與白腐菌生物處理相結(jié)合,利用吸附固定化白腐菌、包埋固定化白腐菌分別對(duì)酸性黑ATT進(jìn)行脫色處理。課題首先采用氣相色譜-質(zhì)譜聯(lián)用(GC-MS)對(duì)脫色后的酸性黑ATT溶液中的物質(zhì)進(jìn)行檢測(cè),對(duì)降解后可能存在的物質(zhì)進(jìn)行分析,對(duì)比前后物質(zhì)結(jié)構(gòu)的變化,證明了白腐菌對(duì)酸性黑ATT的脫色作用不僅僅是微生物的生物吸附,還有發(fā)色N=N結(jié)構(gòu)的斷裂的原因。在吸附固定化實(shí)驗(yàn)中,將游離態(tài)白腐菌分別吸附固定化在葵花盤(pán)、葵花秸稈、葵花籽皮、玉米芯、花生殼等經(jīng)過(guò)改性后的植物材料上,投入到酸性黑ATT模擬染料廢水中進(jìn)行脫色。對(duì)比了各空白載體的機(jī)械強(qiáng)度、吸附、解吸以及菌體附著情況,分別考察了不同載體、溫度、搖床轉(zhuǎn)速、染料廢水初始pH、染料廢水濃度等因素對(duì)酸性黑ATT脫色效果的影響。結(jié)果表明:用葵花盤(pán)和葵花秸稈固定化白腐菌對(duì)酸性黑ATT的脫色效果較好。葵花盤(pán)對(duì)酸性黑ATT脫色的最適條件為pH 5.0、溫度30℃、轉(zhuǎn)速150rpm、染料初始濃度100ppm,葵花秸稈的最適條件為pH 5.0、溫度22℃、轉(zhuǎn)速150rpm、染料初始濃度100ppm,兩載體在最佳條件下25h脫色率分別可達(dá)94.41%、90.49%。最佳條件下連續(xù)脫色5次,兩種載體對(duì)酸性黑ATT的脫色率仍能保持在87%以上。在包埋固定化實(shí)驗(yàn)中,本文利用海藻酸鈉(SA)、聚乙烯醇(PVA)、活性炭共同對(duì)白腐菌進(jìn)行固定化。以固定化小球的成型效果、硬度以及彈性為依據(jù),對(duì)包埋固定化材料海藻酸鈉(SA)和聚乙烯醇(PVA)配比進(jìn)行調(diào)整,進(jìn)而考察了不同固化時(shí)間、培養(yǎng)時(shí)間對(duì)酸性黑ATT廢水脫色效果的影響。結(jié)果表明:包埋固定化配比為1%:7%時(shí)制得的包埋固定化小球性能最好;確定固化時(shí)間和培養(yǎng)時(shí)間分別為90 h和5d,此時(shí)包埋固定化小球?qū)λ嵝院贏TT的脫色率可達(dá)到78.13%。實(shí)驗(yàn)對(duì)包埋固定化小球的機(jī)械強(qiáng)度、熱穩(wěn)定性、膨脹率、比表面積、孔徑分布、孔容以及傳質(zhì)等性能進(jìn)行檢測(cè),結(jié)果表明:固定化小球強(qiáng)度系數(shù)可達(dá)到93%,耐受溫度可達(dá)85℃;固定化小球的膨脹率1.459;比表面積27.73 m2/g,孔容0.0533 cm3/g,平均孔徑19.11 nm;采用此種包埋固定化方法下的固定化小球的傳質(zhì)性能為99.46%,掃描電子顯微鏡顯示固定化小球具有致密的孔隙。在采用包埋固定化白腐菌對(duì)酸性黑ATT進(jìn)行脫色過(guò)程中,本文分別考察了不同載體、溫度、搖床轉(zhuǎn)速、染料廢水初始pH、染料廢水濃度等因素對(duì)酸性黑ATT脫色率的影響。結(jié)果表明:包埋固定化白腐菌對(duì)酸性黑ATT的脫色,其適宜條件為pH3.5,溫度30℃,轉(zhuǎn)速150 rpm時(shí),染料初始濃度150 ppm,該條件下對(duì)酸性黑ATT連續(xù)脫色次數(shù)可達(dá)8次,最大脫色率均保持在81%左右,為固定化白腐菌對(duì)染料廢水脫色的研究提供了理論依據(jù)。本文通過(guò)大量實(shí)驗(yàn)證實(shí)了固定化白腐菌對(duì)復(fù)合偶氮染料廢水具有很好的脫色效果,對(duì)于實(shí)際廢水處理具有較好的應(yīng)用前景。
[Abstract]:Acid black ATT is a typical compound azo dye, which has the characteristics of poor biodegradability, high chromaticity and complex composition, which will cause serious pollution in the environment. Decolorization treatment becomes the key link in treating this kind of wastewater. At present, there are few reports on the treatment of wastewater contaminated by this kind of dye. The acid black ATT was Decolorated by adsorption and immobilization of white rot fungi and immobilized white rot fungi. First, gas chromatography-mass spectrometry (GC-MS) was used to detect the substances in the acid black ATT solution after decolorization. The substances that may exist after degradation were analyzed, and the changes of material structure before and after were compared. It is proved that the decolorization of white rot fungus to acid black ATT is not only the biological adsorption of microorganisms, but also the cause of the fracture of the hair color N=N structure. In the adsorption immobilization experiment, the free white rot fungus is adsorbed on the sunflower plate, sunflower stalk, sunflower seed skin, corn cob, peanut shell and so on, and put into the modified plant material. The decolorization of acid black ATT simulated dye wastewater was carried out. The mechanical strength, adsorption, desorption and adhesion of the blank carriers were compared. The effects of different carriers, temperature, rocking speed, initial pH of dye wastewater, dye wastewater concentration and other factors on the decolorization effect of acid black ATT were investigated. The decolorization effect of immobilized white rot fungi on acid black ATT is better. The optimum conditions for the decolorization of acid black ATT are pH 5, temperature 30, speed 150rpm, initial dye concentration 100ppm, the optimum conditions for sunflower straw are pH 5, temperature 22, 150rpm, initial dye concentration 100ppm, and two carrier in the optimum condition, the 25h decolorization rate can reach 9, respectively. 4.41%, 4.41% continuous decolorization under the best condition, and the decolorization rate of acid black ATT can remain above 87% by two kinds of carrier. In the immobilization experiment, this paper uses sodium alginate (SA), polyvinyl alcohol (PVA) and activated carbon to immobilize the white rot fungi. The results are based on the molding effect, hardness and elasticity of the immobilized ball. The ratio of sodium alginate (SA) and polyvinyl alcohol (PVA) was adjusted, and the effect of different curing time and incubation time on the decolorization effect of acid black ATT wastewater was investigated. The results showed that the immobilized and immobilized small sphericity of 1%: 7% was the best, and the curing time and incubation time were 90 h and 5D, respectively. At this time, the decolorization rate of embedded immobilized pellets to acid black ATT can be achieved by testing the mechanical strength, thermal stability, expansion rate, specific surface area, pore size distribution, Kong Rong and mass transfer properties of the embedded immobilized pellets by 78.13%. test. The results show that the strength coefficient of the immobilized ball can reach 93%, the tolerance temperature is up to 85 degrees C, and the immobilized ball is fixed. The expansion rate is 1.459, the specific surface area is 27.73 m2/g, the pore volume is 0.0533 cm3/g and the average pore size is 19.11 nm. The mass transfer performance of the immobilized pellets under this embedding fixation method is 99.46%, and the scanning electron microscope shows that the immobilized pellets have dense pores. The effects of different carriers, temperature, rocking speed, initial pH of dye wastewater, dye wastewater concentration and other factors on the decolorization rate of acid black ATT were investigated. The results showed that the suitable conditions for decolorization of acid black ATT by embedding immobilized white rot fungi were pH3.5, temperature 30 C and speed 150 rpm, the initial dye concentration was 150 ppm, and under this condition acid black A The number of continuous decolorization of TT can reach 8 times and the maximum decolorization rate remains about 81%. It provides a theoretical basis for the study of decolorization of dye wastewater by immobilized white rot fungi. This paper has proved that the immobilized white rot fungi have good decolorization effect on the compound azo dye wastewater through a large number of experiments, and has a good application prospect for the treatment of practical wastewater.
【學(xué)位授予單位】:天津科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X703;X172
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 董殿波;;印染廢水處理技術(shù)研究進(jìn)展[J];染料與染色;2015年04期
2 梁穎;王洪凱;陳慧;文岳中;王紅宇;;殼聚糖鐵固定疣孢漆斑菌球處理染料的研究[J];環(huán)境科學(xué)學(xué)報(bào);2016年01期
3 丁紹蘭;陳旭婷;白雄艷;;固定化白腐真菌處理染料廢水的研究[J];陜西科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
4 詹琪;廖紅福;張敏;楊鼎俊;楊海龍;;漆酶催化復(fù)合染料酸性黑ATT脫色的研究[J];環(huán)境科學(xué)學(xué)報(bào);2014年05期
5 鄭佩;陳芳艷;唐玉斌;盛建國(guó);成小鋒;;固定化菌藻微球的制備、表征及其對(duì)富營(yíng)養(yǎng)化湖水的修復(fù)[J];環(huán)境工程學(xué)報(bào);2014年05期
6 陳文華;李剛;許方程;泮t;溫玲寧;都林娜;;染料廢水污染現(xiàn)狀及處理方法研究進(jìn)展[J];浙江農(nóng)業(yè)科學(xué);2014年02期
7 李婧;黨志;郭楚玲;盧桂寧;盧靜;;復(fù)合固定化法固定微生物去除芘[J];環(huán)境化學(xué);2012年07期
8 蘇崇禧;;探討固定化小球處理效果的影響因素[J];科技致富向?qū)?2012年02期
9 范榮桂;劉博;王權(quán)程;董雙雙;李葉葉;王君;;白腐真菌固定化技術(shù)及其研究進(jìn)展[J];廣東化工;2011年10期
10 武春艷;柴濤;林凡聰;王敏;于國(guó)強(qiáng);;兩種載體固定化白腐真菌的優(yōu)化實(shí)驗(yàn)及性能比較[J];工業(yè)水處理;2011年06期
相關(guān)重要報(bào)紙文章 前1條
1 李莉;;如何在治水實(shí)踐中推動(dòng)優(yōu)化技術(shù)創(chuàng)新[N];中國(guó)環(huán)境報(bào);2016年
相關(guān)博士學(xué)位論文 前1條
1 吳志國(guó);硝基苯降解菌的分離鑒定、降解途徑與關(guān)鍵酶基因的克隆及其細(xì)胞固定化研究[D];南京農(nóng)業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前6條
1 張琪;枯草芽孢桿菌固定化載體的改性條件及處理模擬污水[D];哈爾濱理工大學(xué);2014年
2 馬樂(lè);印染廢水白腐真菌生物強(qiáng)化處理技術(shù)研究[D];青島大學(xué);2013年
3 鄭佩;固定化藻菌微球?qū)Ω粻I(yíng)養(yǎng)化湖水的修復(fù)研究[D];江蘇科技大學(xué);2013年
4 李婧;以玉米秸稈吸附—包埋—交聯(lián)的復(fù)合固定化方法固定微生物處理芘的研究[D];華南理工大學(xué);2012年
5 鄭文爽;漆酶的固定化及其對(duì)偶氮染料的脫色降解[D];東北林業(yè)大學(xué);2012年
6 侯蘭玉;固定化微生物新工藝處理焦化廢水研究[D];太原理工大學(xué);2008年
,本文編號(hào):1978877
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1978877.html