北京灰霾重污染過程典型案例剖析
本文選題:北京地區(qū) + 灰霾 ; 參考:《山東師范大學(xué)》2017年碩士論文
【摘要】:近年來,隨著北京城市規(guī)模的不斷擴大,污染排放量不斷增加,主要的大氣污染排放總量遠(yuǎn)遠(yuǎn)超過了環(huán)境容量,但北京市地形結(jié)構(gòu)較為特殊,不利于污染物的稀釋擴散,因此近些年來灰霾天氣出現(xiàn)的次數(shù)越來越多,影響程度也在逐步加大,給日常生活、交通運輸和人體健康都帶來了很大的不利影響。本文對2015~2016年度北京灰霾污染特征進行分析,并作出一年的后向氣流軌跡進行聚類分析,由此挑選出典型的灰霾重污染過程,利用觀測實驗所得數(shù)據(jù)對典型案例進行剖析,分析其污染特征及污染成因,具體結(jié)果如下:(1)2015年9月至2016年8月北京灰霾發(fā)生小時數(shù)為3891小時,灰霾日數(shù)為190天。其中,11月灰霾日出現(xiàn)最多為27天,7月、12月次之均為23天,灰霾日出現(xiàn)最少的是2月,僅為6天。另外,各月干霾時發(fā)生頻率均高于濕霾。研究期間月均AQI均超過50,AQI與PM2.5變化趨勢基本一致,均呈現(xiàn)出2015年9月至2015年12月上升的趨勢,到2016年1月、2月有所下降,然后再上升、下降、上升、下降的波浪式變化趨勢。綜上所述,研究期間北京的空氣質(zhì)量狀況與氣象學(xué)中霾的觀測統(tǒng)計情況基本一致。(2)對北京市進行后向軌跡聚類分析,得到5類,并計算每類軌跡對應(yīng)的PM 2.5平均濃度,其中來自內(nèi)蒙古西部地區(qū)及河北、山東、河南交界地區(qū)的兩類軌跡對北京的空氣質(zhì)量有較大的影響;來自北西北方向軌跡的氣團最為清潔,為北京帶來良好的天氣;利用潛在污染源貢獻法(PSCF)、軌跡濃度權(quán)重分析法(CWT)對北京的PM 2.5濃度進行分析,高值區(qū)主要集中在河北、山西及其周圍地區(qū),表明短距離傳輸是導(dǎo)致北京PM 2.5高濃度的主要原因。(3)本文別用氣象學(xué)中的灰霾日和AQI作為兩大參考指標(biāo)挑選污染過程,對連續(xù)3天及以上空氣質(zhì)量指數(shù)大于100的灰霾日挑選為為灰霾重污染過程,共得到18個灰霾重污染過程,并結(jié)合后向軌跡模式挑選最具有代表性的污染過程7(2015年11月26日~12月2日,冬季采暖期)以及污染過程17(2016年7月2日~12日,夏季非采暖期)。(4)2015年11月26日~12月2日的典型污染過程7涉及整個中東部地區(qū),大部分地區(qū)PM2.5日均濃度高于250ug?m-3,北京地區(qū)更是處于嚴(yán)重“爆表”狀態(tài),是一次大范圍、長時間的污染天氣過程。2016年7月2日~12日的典型污染過程17輕度污染涉及的地區(qū)范圍較廣,中度污染及上水平的污染主要涉及京津冀地區(qū)、濟南以及河南等地區(qū),出現(xiàn)中到重度污染,是一次小范圍、長時間的污染天氣過程。(5)冬季采暖期的污染過程期間70%的時段能見度低于2km,達(dá)重度霾污染級別。相對濕度最高達(dá)88.9%,促進了細(xì)顆粒物污染物的生成。污染期間風(fēng)速較低,靜風(fēng)頻率達(dá)18%,風(fēng)向以西南風(fēng)為主。夏季非采暖期的污染過程期間平均相對濕度為51.6%,能見度基本上維持在5Km左右,以輕微霾和輕度霾為主;風(fēng)級主要為1級和2級水平,對應(yīng)了0.3~3.3m/s的風(fēng)速,風(fēng)速相對較低,近地污染物稀釋擴散能力較弱,并且風(fēng)向以南風(fēng)為主。(6)兩次典型污染過程在垂向的光學(xué)特征分析中,均在污染嚴(yán)重期間出現(xiàn)消光物質(zhì),不同的是,冬季的污染過程是伴隨著氣象條件的轉(zhuǎn)變以及邊界層高度的升高,污染驅(qū)散,而夏季的污染過程是由于一場降雨將污染驅(qū)散。另外,在冬季的污染過程中,大氣邊界層高度與PM2.5有著明顯的反比關(guān)系,且污染期間以穩(wěn)定層結(jié)為主;而夏季的污染過程中,在嚴(yán)重污染期間大氣邊界層高度很低,大氣層結(jié)屬于穩(wěn)定層結(jié),在輕度污染期間,PM2.5濃度卻與大氣邊界層高度的波動無明顯相關(guān)關(guān)系,大氣層結(jié)屬于不穩(wěn)定層結(jié)。
[Abstract]:In recent years, with the continuous expansion of urban scale in Beijing, the emission of pollution is increasing, the total emission of major air pollution is far more than the environmental capacity. However, the topography of Beijing is more special and is not conducive to the dilution and diffusion of pollutants. Therefore, the haze weather has become more and more frequent in recent years, and the degree of influence is gradually increasing. The characteristics of daily life, transportation and human health have been greatly adversely affected. In this paper, the characteristics of Beijing haze pollution in the year 2015~2016 are analyzed, and a year of cluster analysis of the back flow trajectory is made, and the typical haze heavy pollution process is selected, and the typical cases are analyzed by the data obtained from the observation experiment. The results are as follows: (1) the number of haze in Beijing from September 2015 to August 2016 is 3891 hours, and the number of haze days is 190 days. Among them, the haze days in November are up to 27 days, July and December are 23 days, and the least in the haze day is February and only 6 days. In addition, the frequency of haze in each month is all frequency Higher than the wet haze. During the study, the monthly average AQI was over 50, and the trend of AQI and PM2.5 was basically the same, showing a trend of rising from September 2015 to December 2015, in January 2016, in February, and then rising, decreasing, rising, and decreasing in wave style. The air quality of Beijing and the haze in meteorology during the study. The observational statistics are basically the same. (2) 5 types are obtained and the average concentration of PM 2.5 corresponding to each kind of trajectory is calculated, and the two kinds of trajectories from the west of Inner Mongolia and Hebei, Shandong and Henan have a great influence on the air quality of Beijing, and the gas from the northwestern northwest direction. The group is most clean and brings good weather for Beijing. Using the potential pollution source contribution method (PSCF), the locus concentration weight analysis (CWT) is used to analyze the PM 2.5 concentration in Beijing. The high value area is mainly concentrated in Hebei, Shanxi and its surrounding areas, which indicates that the short distance transmission is the main cause of the high concentration of the Beijing PM 2.5. (3) this article does not use the weather. The haze day and AQI were selected as the two major reference indexes to select the pollution process. The haze days of 3 days or more of the air mass index more than 100 were selected as the haze heavy pollution process, and 18 haze heavy pollution processes were obtained, and the most representative pollution process 7 (November 26, 2015, ~12 month, 2, winter, November 26, 2015) was selected in combination with the backward trajectory model. The season heating period) and the pollution process 17 (July 2, 2016 ~12 day, summer non heating period). (4) the typical pollution process of ~12 month 2 of November 26, 2015 is involved in the whole Middle East region. The average daily concentration of PM2.5 in most areas is higher than 250ug? M-3, and the Beijing region is in a serious "burst form" state, it is a large scale, long time pollution weather. The typical pollution process of ~12 day July 2nd,.2016, 17 mild pollution involving a wide range, moderate pollution and upper level of pollution mainly involved in the Beijing Tianjin Hebei region, Ji'nan and Henan and other areas, the emergence of moderate to severe pollution, is a small, long time pollution weather process. (5) during the winter heating period 70% of the pollution process. The visibility is lower than 2km, reaching the level of heavy haze pollution. The highest relative humidity reaches 88.9%, which promotes the formation of fine particulate matter. The wind speed is low, the wind velocity is 18%, the wind direction is west to the south wind. The average relative humidity is 51.6% during the non heating period in summer, and the visibility is basically around 5Km. Haze and light haze are the main factors; the wind level is mainly 1 and 2 levels, corresponding to the wind speed of 0.3~3.3m/s, the wind speed is relatively low, the dilution and diffusion capacity of the near ground pollutants is weak, and the wind direction is mainly south wind. (6) the two typical pollution processes in the vertical optical characteristics are all in the period of serious pollution, the different is winter. The pollution process is accompanied by the change of meteorological conditions and the elevation of the boundary layer, and the pollution is dispersed. In summer, the process of pollution is caused by the dispersal of the pollution. In the process of winter pollution, the height of the atmospheric boundary layer has an obvious inverse relation to the PM2.5, and the stable layer is the dominant layer during the pollution period, and the pollution in the summer is the same. During the process of serious pollution, the atmospheric boundary layer is very low, and the atmosphere is a stable layer. During the mild pollution, the concentration of PM2.5 has no significant correlation with the fluctuation of the atmospheric boundary layer, and the atmosphere is an unstable layer.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X513
【參考文獻】
相關(guān)期刊論文 前10條
1 劉唯佳;韓永翔;王靜;趙天良;;北京2010年10月一次典型灰霾過程光學(xué)特性分析[J];中國環(huán)境科學(xué);2015年07期
2 程念亮;李云婷;張大偉;聶滕;邱啟鴻;徐文帥;;2013年1月北京市一次空氣重污染成因分析[J];環(huán)境科學(xué);2015年04期
3 趙倩彪;胡鳴;張懿華;;利用后向軌跡模式研究上海市PM_(2.5)來源分布及傳輸特征[J];環(huán)境監(jiān)測管理與技術(shù);2014年04期
4 王躍;王莉莉;趙廣娜;王躍思;安俊琳;劉子銳;唐貴謙;;北京冬季PM2.5重污染時段不同尺度環(huán)流形勢及邊界層結(jié)構(gòu)分析[J];氣候與環(huán)境研究;2014年02期
5 楊欣;陳義珍;劉厚鳳;趙妤希;高健;柴發(fā)合;孟凡;;北京2013年1月連續(xù)強霾過程的污染特征及成因分析[J];中國環(huán)境科學(xué);2014年02期
6 吳兌;廖碧婷;吳蒙;陳慧忠;王迎春;廖曉農(nóng);古月;張小玲;趙秀娟;權(quán)建農(nóng);劉偉東;孟金平;孫丹;;環(huán)首都圈霾和霧的長期變化特征與典型個例的近地層輸送條件[J];環(huán)境科學(xué)學(xué)報;2014年01期
7 曹偉華;梁旭東;李青春;;北京一次持續(xù)性霧霾過程的階段性特征及影響因子分析[J];氣象學(xué)報;2013年05期
8 唐宜西;張小玲;熊亞軍;趙秀娟;范廣洲;王京麗;;北京一次持續(xù)霾天氣過程氣象特征分析[J];氣象與環(huán)境學(xué)報;2013年05期
9 王躍思;姚利;劉子銳;吉東生;王莉莉;張軍科;;京津冀大氣霾污染及控制策略思考[J];中國科學(xué)院院刊;2013年03期
10 王茜;;利用軌跡模式研究上海大氣污染的輸送來源[J];環(huán)境科學(xué)研究;2013年04期
,本文編號:1885682
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1885682.html