濕法煉鋅凈化鎳鈷渣新工藝技術(shù)研究與應(yīng)用
發(fā)布時(shí)間:2018-05-12 22:12
本文選題:濕法煉鋅 + 貧鎘液; 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:2008年,我國(guó)發(fā)布了新的危險(xiǎn)廢物名錄,把鋅冶煉過程中,鋅浸出液凈化產(chǎn)生的凈化渣,包括鋅粉-黃藥法、砷鹽法、逆向銻鹽法、鉛銻合金鋅粉法等工藝除銅、鎘、鈷、鎳、銻等雜質(zhì)產(chǎn)生的廢渣,列為有毒廢物,其運(yùn)輸、貯存、利用或者處置,按照危險(xiǎn)廢物進(jìn)行管理。因此,如何有效地處理濕法煉鋅中產(chǎn)出的凈化渣,并對(duì)其中的有價(jià)金屬進(jìn)行回收,具有重大的現(xiàn)實(shí)意義,也是衡量現(xiàn)代企業(yè)綜合競(jìng)爭(zhēng)實(shí)力的重要條件之一。貧鎘液是濕法煉鋅凈化過程中產(chǎn)出的凈化渣經(jīng)酸浸出,回收銅、鎘后所得的濾液。傳統(tǒng)濕法煉鋅凈化工藝中,關(guān)鍵技術(shù)之一是怎樣從硫酸鋅溶液中脫除雜質(zhì)鈷,而貧鎘液中鈷離子的閉路循環(huán)問題一直困擾著各濕法煉鋅廠。本文在前期研制的除鈷試劑基礎(chǔ)上,研究了將其應(yīng)用于除去硫酸鋅溶液中的鈷鎳,通過大量的實(shí)驗(yàn)室實(shí)驗(yàn),開發(fā)出一種濕法煉鋅三段凈化新工藝,在國(guó)內(nèi)某濕法煉鋅廠進(jìn)行了全流程的半工業(yè)凈化試驗(yàn)和工業(yè)電積試驗(yàn),以及把除鈷試劑用于脫除貧鎘液中高濃度的鈷,取得的效果較好。本文重點(diǎn)研究了將除鈷試劑應(yīng)用于某濕法煉鋅廠生產(chǎn)的貧鎘液中進(jìn)行鈷開路處理的工藝。本文進(jìn)行了系統(tǒng)的小型、半工業(yè)試驗(yàn)和工業(yè)化試生產(chǎn)。小型試驗(yàn)首先進(jìn)行了含高濃度鈷的純硫酸鋅體系中脫除鈷的助沉劑量和除鈷試劑量的條件試驗(yàn),得到助沉劑為1.17倍鈷質(zhì)量比,除鈷試劑為15倍鈷質(zhì)量比的試劑用量下,能將硫酸鋅溶液中的Co2+從32.4mg/L~106mg/L除至lmg/L左右。然后進(jìn)行了小型貧鎘液除鈷的時(shí)間、溫度、助沉劑加入量、除鈷試劑加入量、雜質(zhì)鎘離子對(duì)除鈷影響的條件試驗(yàn),得到在反應(yīng)溫度85~90℃,反應(yīng)時(shí)間為lh,雜質(zhì)鎘濃度小于100mg/L的條件下,加入與純硫酸鋅體系中相同的試劑用量,驗(yàn)證了能將貧鎘液中的鈷除至lmg/L左右。在小型試驗(yàn)中所得到的最佳條件下,將該工藝進(jìn)行了半工業(yè)試驗(yàn)和工業(yè)化試生產(chǎn),得到的除鈷后液均含鈷在lmg/L左右,驗(yàn)證了該工藝的可行性和可推廣性。工業(yè)化試驗(yàn)生產(chǎn)得到的一次凈化鈷渣綜合樣中鈷含量在9%~12.8%,經(jīng)過650℃馬弗爐焙燒,處理的二次焙燒鈷渣中鈷含量為34.80%,且鋅鈷比在1左右,所獲鈷渣具有很好的回收和利用價(jià)值。將該研究工藝應(yīng)用于生產(chǎn),較好地解決了濕法煉鋅過程中鈷的循環(huán)問題,具有較好的推廣價(jià)值。
[Abstract]:In 2008, China issued a new list of hazardous wastes to remove copper, cadmium, cobalt and nickel from zinc leaching solution purification slag, including zinc powder xanthate process, arsenic salt process, reverse antimony salt process, lead-antimony alloy zinc powder process and so on. Wastes produced by impurities such as antimony are classified as toxic wastes, which are transported, stored, utilized or disposed of, and managed in accordance with hazardous wastes. Therefore, it is of great practical significance to deal effectively with the purified residue produced in zinc hydrometallurgy and to recover the valuable metals, which is also one of the important conditions to measure the comprehensive competitive strength of modern enterprises. Cadmium-poor solution is the filtrate obtained after recovering copper and cadmium by acid leaching of purified slag produced in the purification process of zinc hydrometallurgy. One of the key technologies in the traditional zinc refining process is how to remove cobalt from zinc sulfate solution. However, the closed circuit of cobalt ion in cadmium poor solution has always troubled the zinc smelters. In this paper, a new three-stage purification process for zinc hydrometallurgy has been developed through a large number of laboratory experiments on the basis of the Cobalt removal reagent developed in the previous period, which has been applied to the removal of cobalt and nickel from zinc sulfate solution. The semi-industrial purification test and industrial electrodeposition test of the whole process were carried out in a domestic zinc smelting plant, and the effect of using cobalt remover to remove cobalt from cadmium deficient solution with high concentration was better. This paper focuses on the application of cobalt removal reagents in cadmium deficient liquid produced by a zinc hydrometallurgy plant for open circuit treatment of cobalt. In this paper, small scale, semi-industrial test and industrial trial production are carried out. In the small scale experiment, the conditions of the Cobalt removal dose and the amount of cobalt removal reagent in the system of pure zinc sulfate containing high concentration of cobalt were studied. The results showed that the dosage of the precipitator was 1.17 times of Cobalt mass ratio and that of Cobalt removal reagent was 15 times of Cobalt mass ratio. The Co2 in zinc sulfate solution can be divided from 32.4mg/L~106mg/L to lmg/L. Then the influence of the time, temperature, amount of precipitator, the amount of cobalt removal reagent and the impurity cadmium ion on the cobalt removal were tested. The reaction temperature was 8590 鈩,
本文編號(hào):1880331
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1880331.html
最近更新
教材專著