低共熔溶劑處理含鋅煙塵的研究
本文選題:低共熔溶劑 + ZnO; 參考:《昆明理工大學(xué)》2017年碩士論文
【摘要】:在當(dāng)前鋅資源供應(yīng)日益緊張的情況下,含鋅煙塵等二次鋅資源的綜合利用是解決該問(wèn)題的有效途徑之一,每年全球所生產(chǎn)的鋅大約有30%來(lái)自再生鋅資源,回收含鋅煙塵等二次鋅資源日益緊迫。低共熔溶劑(DES)作為一種新型綠色溶劑,因其毒性低、可生物降解、價(jià)格低廉、合成簡(jiǎn)單等優(yōu)點(diǎn),將其作為處理含鋅煙塵的溶劑,有望克服浸出體系中成份復(fù)雜,分離困難等問(wèn)題,具有重要的理論指導(dǎo)和廣闊的應(yīng)用前景。本文采用低共熔溶劑作為研究體系,以金屬氧化物純物質(zhì)作為研究對(duì)象,通過(guò)金屬氧化物純物質(zhì)在低共熔體系內(nèi)的行為,分別采用膽堿類(lèi)低共熔溶劑溶出各類(lèi)金屬氧化物的純物質(zhì),并且對(duì)成分復(fù)雜的含鋅煙塵進(jìn)行浸出。測(cè)定了 ZnO在ChCl-urea和CC-OA DES中的溶解度,測(cè)定了兩個(gè)體系溫度對(duì)其黏度的影響,通過(guò)質(zhì)譜分析ZnO在兩個(gè)體系內(nèi)的存在形式,測(cè)定了 ZnO濃度和溫度對(duì)ChCl-urea-ZnO電導(dǎo)率的影響。通過(guò)循環(huán)伏安測(cè)試手段研究了在ChCl-urea-ZnO制備金屬鋅的電化學(xué)行為,并通過(guò)濃度的變化,確定顆粒尺寸、形貌等的影響。通過(guò)單因素實(shí)驗(yàn)和響應(yīng)曲線實(shí)驗(yàn)設(shè)計(jì),考察了各個(gè)因素對(duì)鋅浸出率的影響,通過(guò)CC-OA DES體系對(duì)含鋅煙塵的處理的前期研究,為后期處理含鋅煙塵提供了實(shí)驗(yàn)指導(dǎo)。主要研究?jī)?nèi)容及結(jié)論如下:(1)合成的低共熔溶劑在室溫下均可以呈液態(tài)穩(wěn)定存在,符合后續(xù)研究對(duì)體系熔點(diǎn)的要求,且溫度對(duì)兩體系的黏度均具有顯著影響;且兩個(gè)體系黏度的對(duì)數(shù)lnη與溫度的倒數(shù)1/T呈良好的線性關(guān)系;ZnO在兩個(gè)體系中的溶解度受溫度影響較大,ZnO在實(shí)驗(yàn)溫度范圍的溶解度符合含鋅煙塵的浸出要求,ZnO溶解在兩個(gè)體系中的存在形式分別為[ZnOCl·urea]-和[ZnO · HC2O4]-。(2)溫度和ZnO濃度對(duì)ChCl-urea-ZnO體系的電導(dǎo)率均具有顯著影響,電導(dǎo)率隨溫度的升高而增大,隨ZnO濃度的升高電導(dǎo)率先增大。當(dāng)CznO0.24mo1·L-1時(shí),溶液電導(dǎo)率隨ZnO含量的增加而趨于不變,這主要是因?yàn)榕潆x子較大的離子半徑導(dǎo)致體系的淌度減小,黏度增加。在ChCl-urea體系的電化學(xué)窗口內(nèi),電化學(xué)測(cè)試表明,鋅的析出電位Ezn(Ⅱ)/Zn和陰極峰值電位均隨ZnO濃度和溫度的增加均正移,通過(guò)峰值電流與掃速平方根的線性關(guān)系和陰陽(yáng)極峰值電位差,可以得出Zn(Ⅱ)在鎢電極上的還原過(guò)程是一個(gè)受擴(kuò)散控制的準(zhǔn)可逆過(guò)程,算出343K下Zn(Ⅱ)在溶液中的擴(kuò)散系數(shù)D=1.2×10 7cm2·s-1;鋅沉積物的形貌特征與ZnO濃度密切相關(guān),隨著ZnO濃度的上升,沉積層顆粒變大,當(dāng)ZnO濃度為0.32 mol-L-1,沉積層更平整致密。(3)用ChCl-urea低共熔溶劑作為溶劑、氨三乙酸(NTA)作為螯合劑,可以實(shí)現(xiàn)含鋅煙塵中鋅的有效浸出,通過(guò)實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)浸出溫度和液固比對(duì)鋅浸出率影響較為顯著;通過(guò)響應(yīng)實(shí)驗(yàn)設(shè)計(jì),通過(guò)分析發(fā)現(xiàn)對(duì)鋅浸出率的影響浸出時(shí)間浸出溫度NTA濃度液固比;使用CC-OA對(duì)含鋅煙塵進(jìn)行浸出,發(fā)現(xiàn)通過(guò)降溫與加水稀釋可反溶、分離含鋅煙塵中的鋅鐵,CC-OA-ZnO和CC-OA-含鋅煙塵溶出體系析出焙燒物,其結(jié)構(gòu)為方形和長(zhǎng)條形,微觀結(jié)構(gòu)為分層多孔的結(jié)構(gòu),最小組成顆粒尺寸為納米級(jí)。
[Abstract]:In the current situation of increasing supply of zinc resources, the comprehensive utilization of two zinc resources such as zinc smoke and dust is one of the effective ways to solve this problem. Every year, about 30% of the zinc resources produced in the world are from the regenerated zinc resources, and the recovery of two zinc resources, such as zinc containing smoke and dust, is increasingly urgent. Low eutectic solvent (DES) is a new green solvent, because it is a new kind of green solvent. It has the advantages of low toxicity, biodegradation, low price and simple synthesis. It is used as a solvent for the treatment of zinc dust. It is expected to overcome the problems of complex composition and difficult separation in the leaching system. It has important theoretical guidance and broad application prospects. On the basis of the behavior of pure metal oxide pure substance in the low eutectic system, the pure substances of all kinds of metal oxides were dissolved in the low eutectic solvent of choline, and the complex zinc soot dust was leached. The solubility of ZnO in ChCl-urea and CC-OA DES was measured, and the viscosity of two system temperatures was determined. The effects of ZnO concentration and temperature on the electrical conductivity of ChCl-urea-ZnO were measured by mass spectrometric analysis in the two systems. The electrochemical behavior of zinc in ChCl-urea-ZnO was investigated by cyclic voltammetry, and the effects of particle size and morphology were determined by the change of concentration. The effect of various factors on the zinc leaching rate was investigated. The preliminary study on the treatment of zinc containing smoke and dust by CC-OA DES system provides experimental guidance for the later treatment of zinc containing dust. The main contents and conclusions are as follows: (1) the low eutectic solvent can be stable in liquid state at room temperature. The requirements for the melting point of the system are studied, and the temperature has a significant influence on the viscosity of the two system; and the logarithmic ln of the viscosity of the two systems has a good linear relationship with the reciprocal 1/T of the temperature; the solubility of ZnO in the two systems is greatly influenced by the temperature, and the solubility of the ZnO in the experimental temperature range is in accordance with the leaching requirements of the zinc containing dust and the dissolution of ZnO. In the two systems, the existence of [ZnOCl. Urea]- and [ZnO. HC2O4]-. (2) temperature and ZnO concentration have significant influence on the conductivity of ChCl-urea-ZnO system. Electrical conductivity increases with the increase of temperature. The conductivity increases with the increase of ZnO concentration. When CznO0.24mo1. L-1, the conductivity of the solution tends to increase with the increase of ZnO content. In the electrochemical window of the ChCl-urea system, the electrochemical measurements show that the precipitation potential of Ezn (II) /Zn and the peak potential of the cathode are both shifted positively with the increase of the ZnO concentration and temperature, and the peak current is linearly related to the square root of the sweep speed. The peak potential difference of the Zn (II) is a quasi reversible process under the control of the tungsten electrode. The diffusion coefficient of Zn (II) in the solution is D=1.2 * 10 7cm2. S-1 under the 343K. The morphology of the zinc deposits is closely related to the concentration of ZnO. With the increase of ZnO concentration, the particles of the deposition layer become larger, when ZnO concentration is concentrated. The degree is 0.32 mol-L-1 and the deposition layer is more smooth and compact. (3) the effective leaching of zinc in zinc containing dust can be achieved by using ChCl-urea low eutectic solvent as solvent and ammonia three acetic acid (NTA) as chelating agent. The results show that leaching temperature and liquid solid ratio have a significant influence on the zinc leaching rate. The leaching rate affects the liquid and solid ratio of the leaching temperature NTA concentration, and the leaching of zinc containing smoke and dust by CC-OA is found. It is found that the zinc iron, CC-OA-ZnO and CC-OA- containing zinc smoke and dust are separated from the zinc smoke and dust, and the structure is square and long strip, and the microstructure is a layered porous structure. The smallest size of the particle is nanoscale.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X701;TF813
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張遠(yuǎn);李林菲;李堅(jiān);華一新;徐存英;柯平超;;氯化膽堿-水合草酸低共熔溶劑中ZnO的溶解行為[J];中南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年08期
2 譚青;李啟厚;劉志宏;李玉虎;劉智勇;劉付朋;;濕法煉鋅過(guò)程中氟氯脫除技術(shù)研究現(xiàn)狀[J];濕法冶金;2015年04期
3 張歡歡;劉玉婷;李戎;邢彥軍;;新型低共熔溶劑的制備、表征及物性研究[J];化學(xué)通報(bào);2015年01期
4 羅虹霖;劉維;覃文慶;劉瑞增;鄭永興;楊康;韓俊偉;;氧化鋅煙塵中銦的揮發(fā)富集[J];中國(guó)有色金屬學(xué)報(bào);2014年11期
5 盧宇飛;熊?chē)?guó)煥;何艷明;;鋅冶煉浸出渣資源化利用技術(shù)分析[J];云南冶金;2014年01期
6 李長(zhǎng)平;李琢;鄒本雪;劉青山;劉曉霞;;質(zhì)子型離子液體N,N-二甲基乙醇胺丙酸鹽的密度、粘度及電導(dǎo)率(英文)[J];物理化學(xué)學(xué)報(bào);2013年10期
7 張盈盈;陸小華;馮新;史以俊;吉曉燕;;膽堿類(lèi)低共熔溶劑的物性及應(yīng)用[J];化學(xué)進(jìn)展;2013年06期
8 劉青山;顏佩芳;楊淼;譚志誠(chéng);李長(zhǎng)平;WELZ-BIERMANN Urs;;離子液體[C_npy][NTf_2](n=2,4,5)的動(dòng)力粘度和電導(dǎo)率(英文)[J];物理化學(xué)學(xué)報(bào);2011年12期
9 胡曉軍;郭婷;周?chē)?guó)治;;含鋅冶金粉塵處理技術(shù)的發(fā)展和現(xiàn)狀[J];鋼鐵研究學(xué)報(bào);2011年07期
10 宋丹娜;張鵬;唐謨堂;;Zn(Ⅱ)-(NH_4)_2SO_4-H_2O體系中鋅的電積[J];有色金屬;2011年01期
相關(guān)碩士學(xué)位論文 前5條
1 李志強(qiáng);氧化鋅煙塵脫氯新工藝及動(dòng)力學(xué)研究[D];昆明理工大學(xué);2014年
2 劉淑芬;高爐瓦斯泥中鋅綜合回收新工藝研究[D];中南大學(xué);2012年
3 于洋;熱鍍鋅渣再生利用技術(shù)研究[D];東北大學(xué);2010年
4 楊光華;利用含鋅煙塵制備超細(xì)氧化鋅的工藝研究[D];江西理工大學(xué);2010年
5 劉秉國(guó);高爐瓦斯泥碳熱還原脫鋅試驗(yàn)研究[D];昆明理工大學(xué);2007年
,本文編號(hào):1866223
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1866223.html