NY3菌胞外活性小分子對其降解烴效率的影響及作用機(jī)理
本文選題:銅綠假胞單菌NY3 + 有機(jī)酸; 參考:《西安建筑科技大學(xué)》2017年碩士論文
【摘要】:銅綠假單胞菌NY3是優(yōu)良的烴降解菌株,除胞內(nèi)有多種啟動烴降解氧化酶外,該菌屬有非常豐富的胞外分泌物,除Rha以外其他胞外分泌物對該類菌降解烴的作用鮮有報道。本文從共存有機(jī)酸對NY3菌降解烴效率的影響作用出發(fā),通過實驗揭示共存有機(jī)酸影響銅綠假單胞菌NY3降解烴效率的主要原因,是通過影響該菌的胞外分泌物,尤其是吩嗪類物質(zhì)的分泌量。研究工作有重要理論和實際應(yīng)用價值。本論文以NY3菌株為受試菌種,以單一烷烴為降解對象,借助于紫外光譜、氣相、飛行質(zhì)譜和電子順磁共振等研究手段展開相關(guān)工作,獲得以下成果:(1)與十六烷為唯一碳源相比,共存戊二酸、丁二酸、丙二酸、乙酸和草酸等均可促進(jìn)NY3菌對十四烷的降解效率,其中共存戊二酸和草酸促進(jìn)用作較為顯著。除草酸外,其他共存有機(jī)酸均可促進(jìn)NY3菌的生長量。(2)NY3菌生長胞外液均對十四烷有較高的、至少可持續(xù)72h的降解轉(zhuǎn)化效率。胞外液對烴的降解效率與NY3菌分泌于其中的兩種氧化還原酶(NADH與GSH)和吩嗪類氧化還原活性物密切相關(guān)。NY3菌在各生長條件下,均可分泌四種吩嗪物質(zhì):1-羥基吩嗪(PHZ)、綠膿菌素(PYO)、吩嗪1-甲酰胺(PCN)、吩嗪1-羧酸(PCA),生長碳源可影響吩嗪類物質(zhì)的分泌量。(3)共存草酸對NY3菌細(xì)胞繁殖能力和細(xì)胞降解烴的活性均不利,然而,共存草酸卻能明顯促進(jìn)NY3菌對十四烷的降解轉(zhuǎn)化效率。研究表明,共存草酸是通過促進(jìn)NY3分泌PCA的量而提高烴降解效率的。PCA分泌量與胞外液對十四烷的降解率呈正相關(guān)。細(xì)胞降解烴的同時,胞外液對烴的降解效率不可忽略。共存草酸可使胞外液對十四烷的降解率約提高28%。草酸共代謝作用可以通過促進(jìn)NY3菌胞外液中PCA的分泌從而加快胞外液通過自由基機(jī)理對十六烷的降解。(4)體外降解實驗結(jié)果表明,NY3分泌于胞外的4種吩嗪類物質(zhì)PCA、PYO、PCN、PHZ等均能與胞外氧化還原輔酶NADH和GSH等配合降解十四烷,8h內(nèi)十四烷的去除率最大可達(dá)到48.1%。吩嗪類與輔酶NADH和GSH配合可產(chǎn)生羥基自由基,而胞外液及其吩嗪類對烴的降解是由這些羥基自由基引發(fā)的。本文的研究結(jié)果為NY3菌修復(fù)石油烴污染環(huán)境條件優(yōu)化及其應(yīng)用奠定理論基礎(chǔ)。
[Abstract]:Pseudomonas aeruginosa (NY3) is an excellent hydrocarbon-degrading strain. Except for a variety of activated hydrocarbon degradation oxidase, Pseudomonas aeruginosa has abundant extracellular secretions. The effects of extracellular secretions other than Rha on the degradation of hydrocarbon are rarely reported. Based on the effect of coexisting organic acids on the hydrocarbon degradation efficiency of NY3 bacteria, the main reason for the effect of co-existing organic acids on the hydrocarbon degradation efficiency of Pseudomonas aeruginosa NY3 was revealed through experiments, which was by affecting the extracellular secretion of Pseudomonas aeruginosa. In particular, the amount of phenazine secreted. The research has important theoretical and practical application value. In this paper, the NY3 strain was used as the tested strain, the single alkane was used as the degradation object, and the relative work was carried out by means of ultraviolet spectrum, gas phase, mass spectrometry and electron paramagnetic resonance. The following results were obtained: 1) compared with cetane as the sole carbon source. Coexisting glutaric acid, succinic acid, malonic acid, acetic acid and oxalic acid can promote the degradation efficiency of tetradecane by NY3 bacteria. In addition to oxalic acid, other co-existing organic acids could promote the growth of NY3 strain. The extracellular solution of the strain was higher than that of tetradecane, and the degradation and transformation efficiency of tetradecane was at least 72 hours. The degradation efficiency of hydrocarbon in extracellular solution was closely related to the two redox enzymes (nadh and GSH) secreted by NY3 and phenazine redox activity. Four phenazine substances, 1: 1-hydroxyphenazine, phenazine, phenazine 1-carboxylic acid, phenazine, phenazine and phenazine. However, coexisting oxalic acid can significantly promote the degradation and transformation efficiency of tetradecane by NY3 bacteria. The results showed that coexisting oxalic acid could increase the degradation efficiency of hydrocarbon by increasing the amount of PCA secreted by NY3 and had a positive correlation with the degradation rate of tetradecane in extracellular solution. At the same time, the degradation efficiency of extracellular solution can not be ignored. Coexisting oxalic acid can increase the degradation rate of tetradecane in extracellular solution by about 28%. The co-metabolism of oxalic acid can accelerate the degradation of cetane by promoting the secretion of PCA in extracellular solution of NY3 bacteria, and thus accelerate the degradation of hexadecane by free radical mechanism. The removal rate of tetradecane could reach 48.1% in 8h after the degradation of tetradecane by isozyme with extracellular redox coenzymes (NADH and GSH). Phenazine complexes with coenzymes NADH and GSH can produce hydroxyl radicals, and the degradation of hydrocarbons by extracellular solution and phenazine is initiated by these hydroxyl radicals. The results of this paper lay a theoretical foundation for the optimization and application of NY3 bacteria in remediation of petroleum hydrocarbon pollution.
【學(xué)位授予單位】:西安建筑科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X172
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李海燕;龔丹;;蒽醌染料的礦化過程及其相關(guān)中間產(chǎn)物分析[J];安全與環(huán)境學(xué)報;2016年02期
2 王冬梅;陳麗華;周立輝;海立強(qiáng);李長寶;;鼠李糖脂對微生物菌劑降解石油的影響[J];環(huán)境工程學(xué)報;2013年10期
3 常虹;聶麥茜;葛碧洲;劉超;楊琴;周立輝;樊曉宇;孫超;韋絨絨;蔣欣;;銅綠假單胞菌NY3所產(chǎn)表面活性劑對原油降解的影響[J];環(huán)境工程學(xué)報;2013年02期
4 陳小英;劉智武;裘建平;何志橋;陳鵬宇;葉秋天;宋爽;;紫外-臭氧聯(lián)合礦化水溶液中的活性藍(lán)19染料[J];浙江工業(yè)大學(xué)學(xué)報;2010年05期
5 駱永明;;中國土壤環(huán)境污染態(tài)勢及預(yù)防、控制和修復(fù)策略[J];環(huán)境污染與防治;2009年12期
6 陳登宇;夏佩瑩;孟慶榮;;銅綠假單胞菌L型的誘導(dǎo)及其產(chǎn)綠膿菌素能力的研究[J];實用醫(yī)藥雜志;2008年01期
7 梁亦欣;劉祥;于魯冀;;我國地下水污染現(xiàn)狀及趨勢[J];科技信息(科學(xué)教研);2007年27期
8 李國亭;曲久輝;張西旺;劉會娟;李靜;雷鵬舉;;光助電催化降解偶氮染料酸性橙II的降解過程研究[J];環(huán)境科學(xué)學(xué)報;2006年10期
9 濮文虹,周李鑫,楊帆,楊昌柱;海上溢油防治技術(shù)研究進(jìn)展[J];海洋科學(xué);2005年06期
10 王紅旗,劉敬奇,齊永強(qiáng);土壤石油污染物中正構(gòu)烷烴降解特性研究[J];上海環(huán)境科學(xué);2004年03期
相關(guān)博士學(xué)位論文 前3條
1 張國英;多環(huán)芳烴、多氯聯(lián)苯優(yōu)良降解菌的分離鑒定及降解特性研究[D];山東大學(xué);2009年
2 鐘華;鼠李糖脂的菌體吸附及其對菌體表面的改性作用研究[D];湖南大學(xué);2008年
3 梁生康;鼠李糖脂生物表面活性劑對石油烴污染物生物降解影響的研究[D];中國海洋大學(xué);2005年
相關(guān)碩士學(xué)位論文 前6條
1 黃煥林;二VA烷高效降解菌A.Baumannii DD1的降解特性及其群體感應(yīng)初探[D];浙江工商大學(xué);2015年
2 馬霞;銅綠假單胞菌NY3胞外活性物對其降解石油烴的作用研究[D];西安建筑科技大學(xué);2014年
3 徐鵬;石油烴代謝菌分泌綠膿菌素對其降解過程的影響作用研究[D];西安建筑科技大學(xué);2013年
4 龔丹;蒽醌染料的TiO_2光催化降解產(chǎn)物分析及其降解過程研究[D];武漢紡織大學(xué);2013年
5 劉超;銅綠假單胞菌NY3產(chǎn)表面活性劑發(fā)酵條件優(yōu)化及表面活性劑性能研究[D];西安建筑科技大學(xué);2011年
6 楊道茂;銅綠假單胞桿菌發(fā)酵生產(chǎn)鼠李糖脂的研究[D];浙江大學(xué);2002年
,本文編號:1827150
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1827150.html