超聲強化鐵碳微電解耦合Fenton法降解硝基苯廢水
本文選題:超聲波 + 鐵碳微電解 ; 參考:《中北大學(xué)》2017年碩士論文
【摘要】:鐵碳微電解還原法是一種處理硝基苯廢水的有效方法。該法將硝基苯苯環(huán)上的硝基還原為胺基,活化苯環(huán),使其更易于氧化或生化處理。然而鐵碳微電解床在處理有機廢水的長期運行過程中,常存在鐵碳填料易鈍化、難連續(xù)可用的問題,造成該法需周期性停止,進行填料清洗再生,從而增加廢水處理成本且致使鐵碳微電解工藝難以連續(xù)長期高效運行。針對鐵碳微電解存在的問題,本文提出超聲強化鐵碳微電解降解硝基苯的思路:將超聲與鐵碳微電解聯(lián)用降解硝基苯廢水,利用超聲的空化作用強化鐵碳微電解降解硝基苯廢水,旨在提高鐵碳填料的連續(xù)使用性。此外,本研究針對超聲/鐵碳微電解對硝基苯廢水的低礦化度,將超聲/鐵碳微電解法與Fenton法耦合處理硝基苯廢水,優(yōu)化有機廢水遷移轉(zhuǎn)化的工藝條件。首先,采用超聲/鐵碳微電解法還原降解硝基苯廢水,考察了零價鐵(Fe~0)劑量、活性炭(GAC)劑量、廢水初始pH值、超聲功率對超聲/鐵碳微電解法降解硝基苯的影響規(guī)律。結(jié)果表明:不更換填料時,超聲/鐵碳微電解法連續(xù)處理4批相同廢水的硝基苯去除率均在90%左右;而在鐵碳微電解法處理下,4次硝基苯去除率依次為52.01%、36.19%、25.16%、17.38%。采用SEM和EDS檢測分析反應(yīng)過程中鐵碳填料表面形貌及元素組分,考察超聲對鐵碳微電解反應(yīng)的強化機制。在超聲的作用下,鐵碳填料表面反應(yīng)活性位點在反應(yīng)過程中可連續(xù)再生,從而使鐵碳微電解法能連續(xù)高效運行。本研究采用單因素法得到了降解硝基苯的適宜操作條件:Fe~0劑量20 g·L~(-1),GAC劑量10 g·L~(-1),廢水初始pH為4,超聲功率為192 W。在此條件下,反應(yīng)80 min,硝基苯的去除率可達93%。其次,在超聲/鐵碳微電解單因素實驗基礎(chǔ)上,采用響應(yīng)面法建立了超聲/鐵碳微電解法對硝基苯去除率預(yù)測的工藝參數(shù)數(shù)學(xué)模型,且檢驗結(jié)果表明該模型擬合程度及準確度較高。實驗因素貢獻率為Fe~0劑量≈廢水初始pH值超聲功率GAC劑量,且Fe~0劑量與廢水初始pH值之間,以及廢水初始pH值與超聲功率之間交互作用明顯。再次,本研究將超聲/鐵碳微電解與Fenton法耦合深度降解硝基苯廢水。結(jié)果表明:鐵碳微電解-Fenton法連續(xù)處理4批硝基苯廢水時,硝基苯最終去除率從69.4%降至31.66%,TOC去除率也從48.11%降至19.2%;而超聲/鐵碳微電解-Fenton法處理4批硝基苯廢水時,硝基苯去除率均達到100%左右,TOC去除率均穩(wěn)定至60%以上。與單純鐵碳微電解-Fenton法相比,超聲不僅整體上強化了鐵碳微電解-Fenton法降解硝基苯廢水的效率,而且也提高了其對硝基苯廢水礦化度。得到的適宜操作條件為:H2O2總投加量為4 mL并分五次添加,超聲/鐵碳微電解的出水pH調(diào)為4,反應(yīng)30 min,最終硝基苯去除率達到100%,TOC去除率可達75%。最后,采用高效液相色譜及氣相色譜-質(zhì)譜聯(lián)用儀對超聲強化降解廢水的中間產(chǎn)物進行了分析,并對其降解途徑進行了推測。在超聲/鐵碳微電解作用下硝基苯的降解途徑為:硝基苯先加氫還原為亞硝基苯,繼而被還原為苯胲,最終轉(zhuǎn)化為苯胺。苯胺在Fenton法作用下,先被氧化為對亞胺醌,繼而氧化脫胺生成化學(xué)性質(zhì)較不穩(wěn)定的對苯醌;此外,超聲/鐵碳微電解處理后的廢水中殘留的硝基苯在Fenton法作用下,經(jīng)氧化生成對硝基酚,再經(jīng)脫硝也轉(zhuǎn)化為對苯醌;對苯醌經(jīng)氧化后分解生成草酸、丙二酸、丁二酸、反式丁烯二酸等小分子物質(zhì),最后徹底氧化分解為二氧化碳和水。
[Abstract]:Iron carbon micro electrolysis reduction is an effective method for the treatment of nitrobenzene wastewater. This method reduces nitrobenzene on nitrobenzene ring to amines, activates benzene ring and makes it easier to oxidize or biochemical treatment. However, iron carbon micro electrolysis bed is often passivated and difficult to be readily available in the long operation process of organic wastewater treatment. It is necessary to stop the method periodically and carry out the cleaning and regeneration of the packing, thus increasing the cost of the wastewater treatment and causing the iron carbon micro electrolysis process to be difficult to run continuously for a long time. Water, using the cavitation effect of ultrasound to strengthen the degradation of Nitrobenzene Wastewater by iron carbon micro electrolysis, aiming at improving the continuous use of iron and carbon filler. In addition, this study is aimed at the treatment of Nitrobenzene Wastewater by ultrasonic / iron carbon microelectrolysis and Fenton method to optimize the transfer and transformation of organic wastewater. First, the reduction and degradation of Nitrobenzene Wastewater by ultrasonic / iron carbon micro electrolysis was used to investigate the effect of zero valent iron (Fe~0) dose, active carbon (GAC) dose, initial pH value of wastewater and ultrasonic power on the degradation of nitrobenzene by ultrasonic / iron carbon micro electrolysis. The results showed that the ultrasonic / iron carbon micro electrolysis process was continuously treated for 4 batches of the same waste when the filler was not replaced. The removal rate of nitrobenzene in water is about 90%, and the removal rate of 4 nitrobenzene is 52.01%, 36.19% and 25.16% in the process of iron carbon micro electrolysis. 17.38%. and EDS are used to detect the surface morphology and element composition of iron carbon filler in the reaction process by SEM and EDS. The reactive sites in the surface of the material can be regenerated continuously during the reaction process, so that the iron carbon micro electrolysis process can run continuously and efficiently. The suitable operating conditions for the degradation of nitrobenzene are obtained by the single factor method: Fe~0 dose 20 g. L~ (-1), GAC dose 10 g L~ (-1), initial pH of wastewater 4, and ultrasonic power of 192 W. in this condition, 80 min, The removal rate of nitrobenzene can reach 93%. next. On the basis of single factor experiment of ultrasonic / iron carbon micro electrolysis, a mathematical model for predicting the removal rate of nitrobenzene by ultrasonic / iron carbon micro electrolysis is established by the response surface method. The test results show that the model has a high degree of fitting and accuracy. The contribution rate of the experimental factor is Fe~0 dose wastewater. The initial pH value of ultrasonic power is GAC, the Fe~0 dose and the initial pH value of wastewater, and the interaction between the initial pH value of the wastewater and the ultrasonic power are obvious. Thirdly, the ultrasonic / Fe carbon micro electrolysis and Fenton method are coupled to the degradation of nitrobenzene wastewater. The results show that the iron carbon micro electrolysis -Fenton method is used to treat 4 batches of nitrobenzene wastewater continuously. The final removal rate of benzene to benzene is reduced from 69.4% to 31.66%, and the removal rate of TOC is also reduced from 48.11% to 19.2%, while the removal rate of nitrobenzene is about 100% and the removal rate of TOC is stable to more than 60% when treating 4 batches of Nitrobenzene Wastewater by ultrasonic / iron carbon micro electrolysis -Fenton method. Compared with the pure iron carbon micro electrolysis -Fenton method, ultrasound not only strengthens the iron carbon microelectricity on the whole. The efficiency of -Fenton degradation of nitrobenzene wastewater and the mineralization of nitrobenzene wastewater have been improved. The suitable operation conditions are as follows: the total dosage of H2O2 is 4 mL and is added five times. The effluent pH of ultrasonic / iron carbon micro electrolysis is 4, the reaction is 30 min, the removal rate of nitrobenzene is 100%, the TOC removal rate can reach 75%. and the high performance liquid is used. The intermediate products of ultrasonic enhanced degradation wastewater were analyzed by chromatography and gas chromatography-mass spectrometry, and the degradation pathway was speculated. The degradation pathway of Nitrobenzene Under the action of ultrasonic / iron carbon micro electrolysis was that nitrobenzene was hydrogenated to nitroso first, and then returned to aniline at Fenton. Under the action of the method, it is oxidized to imide quinone first and then oxidizing deamine to produce quinone. In addition, the residual nitrobenzene in the wastewater after ultrasonic / iron carbon micro electrolysis is oxidized to p-nitrophenol by oxidation and then converted to quinone by denitrification, and oxalic acid is decomposed to produce oxalic acid after oxidation. Dicarboxylic acid, succinic acid, trans maleic acid and other small molecules, finally completely oxidized to carbon dioxide and water.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X78
【參考文獻】
相關(guān)期刊論文 前10條
1 余麗勝;焦緯洲;劉有智;李蘇霖;李傲雯;張敏;;超聲強化鐵碳微電解-Fenton法降解硝基苯廢水[J];化工學(xué)報;2017年01期
2 余麗勝;焦緯洲;劉有智;李蘇霖;李傲雯;張敏;;超聲強化鐵碳微電解處理硝基苯廢水[J];含能材料;2016年10期
3 董梅;周惠良;郭玉瓊;;改性蘭炭末對硝基苯生產(chǎn)廢水的吸附處理[J];化工環(huán)保;2016年03期
4 邵楠;王寶輝;苑丹丹;;硝基苯廢水處理研究進展[J];當代化工;2015年11期
5 ;苯胺和硝基苯職業(yè)危害及預(yù)防措施[J];安全生產(chǎn)與監(jiān)督;2015年06期
6 徐國忠;吳紅運;高麗娟;吳紅霞;金文武;;水蒸汽活化蘭炭粉制備多級孔活性炭及性能表征[J];炭素技術(shù);2015年02期
7 俸志榮;焦緯洲;劉有智;許承騁;郭亮;余麗勝;;鐵碳微電解處理含硝基苯廢水[J];化工學(xué)報;2015年03期
8 郭亮;焦緯洲;劉有智;許承騁;佘沖沖;王朝冉;李焙;王彥;丁永亮;;RPB-O_3/H_2O_2法處理硝基苯模擬廢水[J];環(huán)境工程學(xué)報;2014年12期
9 黎先發(fā);;木質(zhì)素活性炭的制備及其對硝基苯的吸附[J];化工環(huán)保;2014年04期
10 郝卓莉;;改性凹凸棒土吸附地下水中硝基苯的實驗研究[J];科技資訊;2014年04期
,本文編號:1806549
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1806549.html