施用木炭和硫酸亞鐵對鉛鋅礦區(qū)農田水稻吸收重金屬影響
本文選題:鉛鋅礦區(qū) 切入點:重金屬污染 出處:《安徽農業(yè)大學》2017年碩士論文
【摘要】:采礦活動是土壤重金屬污染的一個重要污染源頭,在采礦過程中產生的污染物,通過各種途徑進入周邊土壤,對周邊農田土壤產生不同程度的重金屬污染。對周邊污染程度較低的農田,我們可以通過改變耕作制度的方法,減少農作物對重金屬的吸收,使低污染農田生產出符合食品標準的農作物。本文選擇安徽某鉛鋅礦周邊農田為研究對象,采集測定鉛鋅礦周邊農田以及農田生產出的農作物,對周邊農田及其生產的農作物進行調查,以礦區(qū)污染土壤為供試土壤,研究多種品種水稻對礦區(qū)污染土壤吸收累積重金屬特性,并且通過室內和田間添加改良劑試驗,研究了施加木炭和硫酸亞鐵對水稻重金屬積累的影響,深入研究了硫酸亞鐵誘導水稻根表鐵膜產生及其對水稻吸收銅鋅的影響。為該地區(qū)的水稻安全生產提供理論和實踐幫助。主要研究結果如下:(1)通過對安徽某鉛鋅礦周邊農田及農作物采樣測定,結果顯示鉛鋅礦周邊農田Zn含量范圍為162.49-488.03 mg/kg,變異系數為26.7%;As的含量范圍為39.95-100.73mg/kg,變異系數為23.96%;Cd的含量范圍為0.35-1.88 mg/kg,變異系數為37.84%。Zn、As和Cd的平均含量均超過了國家土壤環(huán)境質量二級標準。周邊農田的水稻糙米和小麥籽粒As平均含量為0.48 mg/kg和0.49 mg/kg,均超過了國家食品安全標準。(2)通過盆栽實驗的方式,以礦區(qū)周邊農田污染土壤為試供土壤,研究不同品種水稻重金屬積累差異。結果顯示,水稻糙米Cd含量為0.03-0.13 mg/kg,最高值和最低值相差4倍;Zn含量為22.41-39.59 mg/kg,最高值和最低值相差不到1倍;Pb含量為0.05-0.17 mg/kg,最高值和最低值相差3倍;As含量為0.25-0.41 mg/kg,最高值和最低值相差不到1倍。(3)通過水培條件下添加硫酸亞鐵誘導水稻根表鐵膜的形成,利用DCB(連二亞硫酸鈉-碳酸氫鈉-檸檬酸鈉)溶液、掃描電鏡、能譜儀和X射線衍射對硫酸亞鐵誘導產生的根表鐵膜進行表征,研究根表鐵膜對水稻吸收銅鋅的影響,結果顯示通過添加硫酸亞鐵可以誘導大量的根表鐵膜在水稻根系表面產生,通過DCB(連二亞硫酸鈉-碳酸氫鈉-檸檬酸鈉)溶液和掃描電鏡等手段可以發(fā)現(xiàn),未處理的水稻根表DCB提取液Fe含量為731 mg/kg,80 mg/kgFe2+處理下水稻根表DCB提取液Fe含量為53562mg/kg。培養(yǎng)根表鐵膜的水稻相比未處理水稻,根表鐵膜Cu含量最高增加了73.16%,Zn含量最高增加了112.10%;根部Cu含量最高降低了31.15%,Zn含量最高降低了13.02%;莖葉Cu含量最高降低了19.50%,Zn含量最高降低了25.56%。(4)通過盆栽和田間試驗研究礦區(qū)污染土壤添加木炭和硫酸亞鐵對水稻吸收砷鋅鎘的影響,對不同處理組下土壤pH,土壤重金屬形態(tài)、水稻產量和水稻各部分重金屬含量測定。實驗結果表明,施加木炭和硫酸亞鐵可以促進水稻的生長發(fā)育,增加水稻產量和生物量,發(fā)現(xiàn)添加木炭可以提高土壤的pH,添加木炭可以顯著降低土壤中Cd和Zn的弱酸提取態(tài),其最大降低幅度達36.17%和23.61%。添加木炭處理的水稻糙米Cd和Zn相較CK下降了67.91%和27.19%;葉面噴施硫酸亞鐵的水稻糙米Cd和As相較CK下降了54.84%和33.33%;土壤添加硫酸亞鐵的水稻糙米Cd和As相較CK下降了22.58%和66.67%。
[Abstract]:The mining activity is an important source of pollution of soil heavy metal pollution, pollutants produced during the mining process, into the surrounding soil through various channels to produce different degrees of heavy metal pollution on the surrounding soil. The pollution surrounding the low degree of farmland, we can through the change of farming system, reduce the uptake of heavy metals by crops. The low pollution of agricultural production to meet the standards of food crops. This paper chooses a lead-zinc mine in Anhui surrounding farmland as the research object, collecting and determining farmland around the lead-zinc mine and farmland produce crops, crop production and the surrounding farmland were investigated to mine contaminated soil as tested soil, heavy metal accumulation on several rice varieties the characteristics of mine contaminated soil, and through indoor and field test of adding modifier, charcoal and sulfur on ferrous acid Effect of the accumulation of heavy metals in rice, in-depth study of ferrous sulfate induced iron film produced by rice roots and the absorption effect of copper and zinc on rice. To provide theory and Practice for the area of safe production of rice. The main results are as follows: (1) by means of a lead-zinc mine in Anhui surrounding farmland and crop sampling and determination, results showed that zinc mine farmland around the Zn content is in the range of 162.49-488.03 mg/kg, the coefficient of variation was 26.7%; the range of As content was 39.95-100.73mg/kg, the coefficient of variation was 23.96%; in the range of Cd to 0.35-1.88 mg/kg, the coefficient of variation was 37.84%.Zn, the average content of As and Cd were more than two national standards of soil environment quality. The average content of rice and wheat As surrounding farmland is 0.48 mg/kg and 0.49 mg/kg, exceeded the national food safety standards. (2) by pot experiment, the mining area surrounding farmland soil Test for soil, study on different varieties of rice heavy metal accumulation difference. The results showed that Cd content in brown rice was 0.03-0.13 mg/kg, the maximum and minimum value is 4 times; the content of Zn is 22.41-39.59 mg/kg, the maximum and minimum value is less than 1 times; the content of Pb is 0.05-0.17 mg/kg, the highest and the lowest value is 3 times the content of As is 0.25-0.41; mg/kg maximum and minimum value is less than 1 times. (3) through the formation of hydroponics adding ferrous sulfate induced rice root iron film, using DCB (with two of sodium bicarbonate and sodium citrate solution), scanning electron microscopy, iron plaque spectrometer and X the X-ray diffraction of ferrous sulfate induced characterized iron membrane absorption effect of copper and zinc on the surface of rice root, the results showed that by adding ferrous sulfate can induce root iron film produced in rice root surface by DCB (with two of sodium hydrogen carbonate Sodium citrate solution) and scanning electron microscopy can be found in the untreated rice root extract DCB content of Fe was 731 mg/kg, 80 mg/kgFe2+ DCB water extract Fe content for 53562mg/kg. culture of iron plaque on root surface of rice compared to untreated rice table rice root, root Cu content of the highest increase in iron film 73.16%, the highest content of Zn increased by 112.10%; the highest Cu content in roots decreased by 31.15%, the highest content of Zn was reduced by 13.02%; the content of Cu in stem and leaf is reduced up to 19.50%, the highest content of Zn was reduced by 25.56%. (4) by pot and field experiment of mine contaminated soil with charcoal and ferrous sulfate of zinc and cadmium on the absorption effect of arsenic rice, soil pH in different treatment groups, the forms of heavy metals in soil and rice yield determination, each part of the content of heavy metals. The experimental results show that the application of charcoal and ferrous sulfate can promote rice growth, increased rice The yield and biomass, found that adding charcoal can improve soil pH, adding charcoal can significantly reduce Cd and Zn in soil, acid extractable state, the largest decrease up to 36.17% 23.61%. and add wood charcoal treated rice Cd and Zn in CK decreased by 67.91% and 27.19%; foliar application of ferrous sulfate in brown rice Cd and As compared with CK decreased by 54.84% and 33.33%; soil adding ferrous sulfate rice Cd and As compared with CK decreased by 22.58% and 66.67%.
【學位授予單位】:安徽農業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X53;X503.231
【參考文獻】
相關期刊論文 前10條
1 徐慧秋;黃銀華;吳志峰;程炯;李鋮;;廣州市農業(yè)土壤As和Cd污染及其對景觀異質性的多尺度響應[J];應用生態(tài)學報;2016年10期
2 邢金峰;倉龍;葛禮強;周東美;;納米羥基磷灰石鈍化修復重金屬污染土壤的穩(wěn)定性研究[J];農業(yè)環(huán)境科學學報;2016年07期
3 謝飛;吳俊鋒;任曉鳴;;江蘇省典型工業(yè)開發(fā)區(qū)土壤重金屬污染及其潛在生態(tài)風險評價[J];安全與環(huán)境學報;2016年02期
4 于曉莉;傅友強;甘海華;沈宏;;干濕交替對作物根際特征及鐵膜形成的影響研究進展[J];土壤;2016年02期
5 何娜;劉靜靜;;鉛鋅礦周圍土壤重金屬形態(tài)分布研究[J];輕工科技;2016年01期
6 賈倩;胡敏;張洋洋;孟遠奪;李小坤;叢日環(huán);任濤;;鉀硅肥施用對水稻吸收鉛、鎘的影響[J];農業(yè)環(huán)境科學學報;2015年12期
7 閆湘;王旭;李秀英;于兆國;;水溶肥料重金屬含量與安全評價[J];土壤通報;2015年05期
8 沈欣;朱奇宏;朱捍華;許超;何演兵;黃道友;;農藝調控措施對水稻鎘積累的影響及其機理研究[J];農業(yè)環(huán)境科學學報;2015年08期
9 黃澤宏;韓存亮;肖榮波;陳敏;;鉛鋅礦周邊土壤重金屬污染特征綜述[J];廣東化工;2015年15期
10 徐佩;吳超;邱冠豪;;我國鉛鋅礦山土壤重金屬污染規(guī)律研究[J];土壤通報;2015年03期
相關碩士學位論文 前3條
1 張楠;低積累型水稻品種的篩選及其配套阻控技術初探[D];浙江大學;2015年
2 唐貞;鎘污染土壤中低積累型水稻及其改良效果研究[D];湖南農業(yè)大學;2011年
3 彭華;Cd、Pb低吸收積累水稻品種篩選研究[D];湖南農業(yè)大學;2009年
,本文編號:1662622
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1662622.html