脫硫吸收塔漿液理化性質(zhì)與起泡相關(guān)性研究
本文關(guān)鍵詞: 脫硫吸收塔 漿液 起泡 理化性質(zhì) 出處:《安徽理工大學》2017年碩士論文 論文類型:學位論文
【摘要】:論文針對燃煤電廠石灰石-石膏濕法煙氣脫硫漿液起泡、影響脫硫系統(tǒng)的穩(wěn)定和安全運行這一工程實際問題,在系統(tǒng)地分析闡述吸收塔漿液溢流的危害、起泡原理等的基礎(chǔ)上,以馬鞍山當涂縣電廠一、二號脫硫吸收塔為研究目標,選取脫硫吸收塔漿液理化性質(zhì)為研究對象,篩選出吸收塔漿液表面張力、硫酸根離子、以及金屬離子砷、鎘、鉻、鐵、鉛、鎳、金屬離子總量等作為漿液理化性質(zhì)典型代表,較系統(tǒng)地開展了漿液代表性理化指標對脫硫吸收塔漿液起泡的影響。論文分別分析研究了吸收塔漿液表面張力、硫酸根離子、鎘、鉻、鐵、鉛、鎳以及吸收塔漿液金屬離子總量與漿液起泡的相關(guān)關(guān)系,研究結(jié)論如下:(1)一、二號吸收塔中漿液起泡程度隨著表面張力的減小而加劇,但一號塔表現(xiàn)出一定的波動性,漿液表面張力變化相對于消泡劑的添加量增加存在相對的滯后性;二號吸收塔中漿液起泡程度隨著表面張力的減小而加劇,漿液表面張力變化相對于消泡劑的添加量表現(xiàn)出較明顯的一致性。(2)吸收塔中漿液起泡程度隨著漿液中S042-濃度的增大而加劇。(3)一、二號塔漿液加入消泡劑后砷含量的變化趨勢與消泡劑添加量的變化趨勢總體是一致的,宏觀上表現(xiàn)出漿液中砷含量對起泡有影響,但一號塔一致性較明顯,二號塔表現(xiàn)出一定的滯后性。(4)吸收塔漿液的鎘含量與消泡劑的添加量無明顯相關(guān)關(guān)系。(5)加入消泡劑后鉻含量的變化趨勢與消泡劑添加量的變化趨勢總體是相反的,表現(xiàn)出負相關(guān)關(guān)系,加入消泡劑后漿液中鉻的含量均維持在一定范圍內(nèi),一號塔Cr含量在2-9mg/L之間波動,二號塔Cr含量在2-7mg/L之間波動。(6)吸收塔中漿液起泡程度隨著鐵含量的增大而減弱(7)吸收塔中漿液起泡程度的嚴重程度是隨著鎳含量的增大而加劇。(8)吸收塔中漿液起泡程度隨著鉛含量的增大而加劇(9)吸收塔中漿液起泡程度隨著金屬總量的增大而加劇。
[Abstract]:Aiming at the practical problems of limestone gypsum wet flue gas desulphurization slurry bubbling affecting the stability and safe operation of desulfurization system the paper systematically analyzes the harm of slurry overflow in absorption tower. On the basis of foaming principle, taking the No. 1 and No. 2 desulfurization absorption tower of Dangtu County Power Plant in Ma'anshan as the research object, the physicochemical properties of the slurry in the desulfurization and absorption tower were selected as the research object, and the surface tension of the slurry was screened out. Sulphate ions, as well as metal ions arsenic, cadmium, chromium, iron, lead, nickel, metal ions as the typical representative of the physical and chemical properties of the slurry. The effects of the representative physicochemical indexes of the slurry on the bubbling of the slurry in the desulfurization absorber were systematically carried out. The surface tension, sulfate ion, cadmium, chromium, iron and lead of the slurry in the absorber were analyzed and studied in this paper. The relationship between the total amount of metal ions in the size of nickel and the size of the absorber and the foam of the slurry. The conclusions are as follows: 1) 1) and 2) the degree of foaming of the slurry in the absorption tower increases with the decrease of the surface tension. However, the No. 1 tower shows certain volatility, and the change of surface tension of slurry is relative to the increase of defoaming agent content, and there is a relative lag between the change of surface tension and the addition of defoamer. The foaming degree of slurry in the No. 2 absorber increases with the decrease of surface tension. The change of surface tension of slurry shows obvious consistency compared with the amount of defoamer.) the foam degree of slurry in the absorber increases with the increase of S042- concentration in the slurry. The change trend of arsenic content after adding defoamer in No. 2 tower slurry is consistent with the change trend of defoamer content. Macroscopically, arsenic content in slurry has influence on foaming, but the consistency of No. 1 tower is obvious. The content of cadmium in the slurry of the absorber has no obvious correlation with the amount of defoamer. The change trend of chromium content after adding defoamer is opposite to that of defoamer addition. There is a negative correlation between Cr and Cr in the slurry after adding defoamer. The Cr content of No. 1 tower fluctuates between 2 and 9 mg / L. Cr content fluctuates from 2 to 7 mg / L in Tower 2) the foam degree of slurry in the absorption tower weakens with the increase of iron content. The degree of foaming of slurry in absorption tower is aggravated with the increase of nickel content.) the foaming degree of slurry in absorption tower increases with the increase of lead content. The foaming degree of the slurry in the absorption tower increases with the increase of the total metal content.
【學位授予單位】:安徽理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:X773
【相似文獻】
相關(guān)期刊論文 前10條
1 王國微;許建斌;李曉彬;;吸收塔漿液溢流原因分析及處理措施[J];河北電力技術(shù);2011年06期
2 顧圣秋;俞利強;;石灰石-石膏濕法脫硫中吸收塔漿液泡沫過多問題探討[J];上海電氣技術(shù);2010年04期
3 況延良;;脫硫吸收塔漿液品質(zhì)惡化原因分析[J];東北電力技術(shù);2013年08期
4 畢德剛;;吸收塔漿液密度測量方式及安裝位置的優(yōu)化[J];科技視界;2012年30期
5 鄒向群;;吸收塔漿液起泡原因分析及消泡劑的選擇[J];電力科技與環(huán)保;2012年04期
6 金東春;吳廣生;朱昶;;濕法脫硫吸收塔漿液成分影響因素研究[J];浙江電力;2007年01期
7 程永新;;FGD系統(tǒng)中吸收塔漿液起泡溢流的原因分析及解決辦法[J];電力科技與環(huán)保;2011年01期
8 武泉;韓成志;王強;;脫硫吸收塔漿液失效的原因與處理措施[J];節(jié)能與環(huán)保;2011年10期
9 潘維加;謝又成;周玲;嚴俊峰;;吸收塔漿液pH值控制系統(tǒng)的分析與改進[J];電站系統(tǒng)工程;2006年06期
10 武泉;韓成志;王強;;脫硫吸收塔漿液失效的原因分析與處理措施[J];同煤科技;2011年03期
相關(guān)會議論文 前1條
1 劉煒;;吸收塔漿液濃度對脫硫系統(tǒng)安全、經(jīng)濟運行的影響[A];全國火電大機組(600MW級)競賽第十二屆年會論文集(下冊)[C];2008年
相關(guān)碩士學位論文 前3條
1 湯啟棟;基于多變量的火力發(fā)電廠煙氣脫硫PH值智能檢測方法研究[D];西南石油大學;2015年
2 王瑤瑤;有機污染物對石灰石-石膏法脫硫塔漿液起泡影響研究[D];安徽理工大學;2017年
3 李軍良;脫硫吸收塔漿液理化性質(zhì)與起泡相關(guān)性研究[D];安徽理工大學;2017年
,本文編號:1467715
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1467715.html