電絮凝與花生殼、改性稻殼吸附耦合技術(shù)去除孔雀石綠的研究
本文關(guān)鍵詞: 電絮凝 花生殼 NaOH改性稻殼 吸附 孔雀石綠 出處:《吉林大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:我國(guó)的染料廢水排放量大、治理技術(shù)不完善使染料廢水的危害愈加嚴(yán)重,染料廢水的治理成為熱點(diǎn)問(wèn)題。電絮凝技術(shù)因?yàn)槠湓O(shè)備簡(jiǎn)單、環(huán)境友好、易于自動(dòng)控制近年來(lái)成為研究熱點(diǎn),但其存在能耗高,電極易鈍化等問(wèn)題。本研究在傳統(tǒng)電絮凝的基礎(chǔ)上分別加入花生殼、改性稻殼作為吸附劑,構(gòu)造電絮凝生物吸附劑吸附耦合體系處理孔雀石綠(MG)廢水,意圖在較短的處理時(shí)間和較低的能耗下獲得較高的去除率。本文先制備花生殼(PS)、Na OH改性稻殼吸附劑(Na OH-RH),采用掃描電鏡(SEM)、傅里葉轉(zhuǎn)換紅外光譜(FT-IR)、比表面積測(cè)試(BET)等手段對(duì)吸附劑進(jìn)行表征,表明其具有良好的吸附性。用質(zhì)量滴定法分別測(cè)定p Hpzc,結(jié)果表明花生殼吸附陽(yáng)離子染料的適宜p H為p H5.8,Na OH改性稻殼作吸附劑的適宜p H為p H7.4。探討電絮凝花生殼吸附耦合體系中電流密度、花生殼投加量、溶液初始p H值、孔雀石綠溶液初始濃度等因素對(duì)去除效率的影響,得出最佳電流密度為2m A/cm2,溶液最佳初始p H值為7,花生殼最佳投加量為5g/L,最佳孔雀石綠初始濃度為50mg/L,在此條件下,5min內(nèi),去除效率可達(dá)98.2%,比傳統(tǒng)電絮凝體系提高了22.4%,反應(yīng)時(shí)間縮短了55min,比單獨(dú)花生殼吸附體系去除效率提高了18.1%,反應(yīng)時(shí)間縮短了35min。在上述體系的最佳電流密度和最佳孔雀石綠溶液初始濃度下,探討電絮凝改性稻殼體系中改性固液比、改性時(shí)間、溶液初始p H值、改性稻殼投加量對(duì)去除效率的影響。得出最佳條件為:固液比1:8,改性時(shí)間30min,溶液初始p H值為8,改性稻殼投加量為3g/L,在此條件下,10min內(nèi),孔雀石綠的去除效率可達(dá)97.5%,比傳統(tǒng)電絮凝體系提高了21.7%,反應(yīng)時(shí)間縮短了50min,比單獨(dú)Na OH改性稻殼吸附體系的去除率提高了17.2%,反應(yīng)時(shí)間縮短了30min。計(jì)算不同體系的單位能耗和單位電極材料消耗,結(jié)果表明,電絮凝花生殼吸附耦合體系的單位能耗和單位電極材料消耗比傳統(tǒng)電絮凝體系降低了97.4%,電絮凝Na OH改性稻殼吸附耦合體系比傳統(tǒng)電絮凝體系降低了88.9%。對(duì)吸附劑吸附過(guò)程進(jìn)行吸附等溫線(xiàn)模型擬合,表明花生殼、Na OH改性稻殼吸附過(guò)程分別符合Langmuir吸附等溫模型和Freundlich吸附等溫模型,吸附動(dòng)力學(xué)均符合準(zhǔn)二級(jí)動(dòng)力學(xué)模型,對(duì)電絮凝體系和耦合體系進(jìn)行反應(yīng)動(dòng)力學(xué)模型擬合,說(shuō)明兩種體系的反應(yīng)均較符合二級(jí)動(dòng)力學(xué)模型。
[Abstract]:Because of the large discharge of dyestuff wastewater in our country and the imperfect treatment technology, the harm of dyestuff wastewater becomes more and more serious, and the treatment of dyestuff wastewater becomes a hot issue. The electroflocculation technology has simple equipment and friendly environment. In recent years, easy automatic control has become a research hotspot, but it has many problems such as high energy consumption, easy passivation of electrode and so on. In this study, peanut shell was added on the basis of traditional electroflocculation, and modified rice husk was used as adsorbent. In order to get a higher removal rate of malachite green MG wastewater by using an electroflocculating biological adsorbent coupling system, a peanut hulls (PSS) was prepared in this paper. In this paper, the treatment of malachite green MG wastewater was carried out in order to obtain a higher removal rate under shorter treatment time and lower energy consumption. NaOH modified rice husk adsorbent, NaOH-RHH, was used by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The adsorbents were characterized by specific surface area test (BET) and the results showed that the adsorbents had good adsorbability. The p Hpzc was determined by mass titration. The results showed that the suitable pH for the adsorption of cationic dyes from peanut shell was pH 5.8. The suitable pH of NaOH modified rice husk as adsorbent was pH 7.4. The electric current density, peanut shell dosage and initial pH value of solution were studied in the electroflocculation peanut shell adsorption coupling system. The effect of the initial concentration of malachite green solution on the removal efficiency was studied. The optimum current density was 2 m / cm 2, the initial pH value was 7, and the optimum dosage of peanut shell was 5 g / L. The optimum initial concentration of malachite green is 50 mg / L, under this condition, the removal efficiency of malachite green can reach 98.22% within 5 minutes, which is 22.4% higher than that of traditional electroflocculation system. The reaction time was shortened by 55 min, and the removal efficiency was increased by 18.1% compared with the adsorption system of peanut shell alone. Under the optimum current density and the optimum initial concentration of malachite green solution, the ratio of solid to liquid and the time of modification in the electroflocculation modified rice husk system were discussed. The effect of initial pH value of the solution and the amount of modified rice husk on the removal efficiency was obtained. The optimum conditions were as follows: the ratio of solid to liquid was 1: 8, the modification time was 30 min, and the initial pH value of the solution was 8. The dosage of modified rice husk is 3 g / L, under this condition, the removal efficiency of malachite green can reach 97.5, which is 21.7% higher than that of traditional electroflocculation system. The reaction time was shortened by 50 mins, and the removal rate of rice husk modified by NaOH was increased by 17.2% compared with that of the single NaOH modified rice husk adsorption system. The reaction time was shortened by 30 mins. The unit energy consumption and the unit electrode material consumption of different systems were calculated. The unit energy consumption and unit electrode material consumption of the electroflocculation peanut shell adsorption coupling system was 97.4% lower than that of the traditional electroflocculation system. Compared with the traditional electroflocculation system, the adsorption coupling system of NaOH modified rice husk decreased 88.9.The adsorption process of adsorbent was fitted by isotherm model, which showed that peanut shell. The adsorption process of rice husk modified by NaOH accords with Langmuir adsorption isotherm model and Freundlich adsorption isotherm model, and adsorption kinetics accords with quasi second-order kinetic model. The reaction kinetics model of electroflocculation system and coupling system is fitted, which shows that the reaction of the two systems is in good agreement with the second-order kinetic model.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X788
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高珊珊;張輝;楊建宇;杜茂安;涂剛;;電絮凝-電氣浮技術(shù)除藻過(guò)程中各參數(shù)的優(yōu)化[J];工業(yè)水處理;2010年12期
2 布和;廢水中懸浮膠態(tài)固體物的交流電絮凝方法[J];環(huán)境科學(xué)叢刊;1983年12期
3 曹夢(mèng)竺;張韌;;電絮凝方法處理垃圾填埋場(chǎng)滲濾液的研究[J];廣州化工;2013年19期
4 支蘇麗;張書(shū)廷;;電絮凝除硅的影響因素分析[J];安全與環(huán)境學(xué)報(bào);2014年02期
5 張壘;薛改鳳;張楠;劉尚超;段愛(ài)民;劉璞;;電絮凝用于焦化廢水脫色的研究[J];武鋼技術(shù);2011年05期
6 趙景霞;徐義懷;;電絮凝破乳除油工藝中型試驗(yàn)[J];石油化工環(huán)境保護(hù);1992年04期
7 楊波;李影影;張峰振;張鴻;卓瓊芳;;鋁板電絮凝去除水體中鎳離子的研究[J];深圳大學(xué)學(xué)報(bào)(理工版);2014年04期
8 張雨山;王樹(shù)勛;王靜;趙瑾;姜天翔;;電絮凝凈化海水過(guò)程中電流效率和總磷去除率的研究[J];工業(yè)水處理;2010年12期
9 樂(lè)波,陶媛,麻敏華,王黎明;直流電絮凝—生化聯(lián)合法處理印染廢水的研究[J];電工電能新技術(shù);2005年03期
10 曹夢(mèng)竺;;電絮凝在水處理中的應(yīng)用[J];廣西輕工業(yè);2007年09期
相關(guān)會(huì)議論文 前2條
1 蔡文廣;;電鍍廢水的克星-電絮凝機(jī)介紹[A];第九屆全國(guó)轉(zhuǎn)化膜及表面精飾學(xué)術(shù)年會(huì)論文集[C];2012年
2 孫金勇;莊云龍;;電絮凝-生化法聯(lián)合處理染料廢水的研究[A];第二屆全國(guó)環(huán)境化學(xué)學(xué)術(shù)報(bào)告會(huì)論文集[C];2004年
相關(guān)重要報(bào)紙文章 前5條
1 李興華;水口山四廠電絮凝廢水工程試生產(chǎn)達(dá)標(biāo)排放[N];中國(guó)有色金屬報(bào);2009年
2 晨風(fēng) 劉偉;滄州煉化投用電絮凝裝置一舉兩得[N];中國(guó)石化報(bào);2009年
3 通訊員 李興華 李琦;采用新工藝 廢水能養(yǎng)魚(yú)[N];衡陽(yáng)日?qǐng)?bào);2011年
4 李興華;這里的廢水能養(yǎng)魚(yú)[N];中國(guó)有色金屬報(bào);2011年
5 本報(bào)記者 武孝軍 實(shí)習(xí)生 龍運(yùn)方;水口山節(jié)能減排工程通過(guò)專(zhuān)家驗(yàn)收[N];衡陽(yáng)日?qǐng)?bào);2009年
相關(guān)博士學(xué)位論文 前2條
1 高珊珊;電絮凝—電氣浮工藝處理微污染含藻水的研究[D];哈爾濱工業(yè)大學(xué);2010年
2 馬馬度;電絮凝/電氧化法處理生活污水中污染物質(zhì)的研究[D];中國(guó)地質(zhì)大學(xué)(北京);2015年
相關(guān)碩士學(xué)位論文 前10條
1 李龍偉;電絮凝-CANON工藝處理石油裂化催化劑生產(chǎn)廢水試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2015年
2 李艷;連續(xù)電絮凝工藝處理重金屬離子廢水的實(shí)驗(yàn)研究[D];江蘇科技大學(xué);2015年
3 馬曉云;電絮凝中傳質(zhì)過(guò)程數(shù)值模擬的研究[D];江蘇科技大學(xué);2015年
4 蔣為;電絮凝結(jié)合凈油機(jī)收獲城市污水培養(yǎng)微藻系統(tǒng)中藻體[D];哈爾濱工業(yè)大學(xué);2015年
5 王樹(shù)青;電絮凝中鋁的形態(tài)結(jié)構(gòu)調(diào)控及電絮凝-超濾除氟研究[D];河北工業(yè)大學(xué);2015年
6 賀群丹;電絮凝—負(fù)載型納米鐵聯(lián)用水處理技術(shù)研究[D];浙江工業(yè)大學(xué);2015年
7 劉慧;脈沖電絮凝處理模擬聚丙烯酰胺廢水研究[D];華中科技大學(xué);2014年
8 王璨;電催化—電絮凝降解毒死蜱廢水的研究[D];南京航空航天大學(xué);2016年
9 陳光光;混凝和電絮凝預(yù)處理石油裂化催化劑廢水試驗(yàn)研究[D];哈爾濱工業(yè)大學(xué);2014年
10 馬思思;FE/AL凝膠復(fù)合電絮凝電極的制備及性能研究[D];天津工業(yè)大學(xué);2017年
,本文編號(hào):1446012
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1446012.html