厭氧條件下土壤典型氧化還原過程對(duì)五氯酚還原轉(zhuǎn)化的影響
本文關(guān)鍵詞:厭氧條件下土壤典型氧化還原過程對(duì)五氯酚還原轉(zhuǎn)化的影響 出處:《浙江大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 五氯酚(PCP) 電子供體 硫酸鹽還原 鐵還原 產(chǎn)甲烷
【摘要】:五氯酚(PCP)作為一種致毒、致畸、致癌的"三致"氯代有機(jī)物,因其在環(huán)境中難降解,而被列入了優(yōu)先污染物。PCP曾作為除草劑、殺蟲劑、木材防腐劑等在世界范圍內(nèi)廣泛應(yīng)用,造成了土壤污染。土壤中PCP的還原轉(zhuǎn)化主要是微生物參與的生化過程。一般來說,土壤中存在天然的鐵還原、硫還原、產(chǎn)甲烷過程,且這些典型的還原過程在淹水厭氧條件下更活躍。因此,土壤,尤其是淹水土壤中PCP的還原轉(zhuǎn)化必然與土壤中典型的氧化還原過程存在相互聯(lián)系。本文研究了在厭氧條件下PCP還原脫氯與土壤中典型氧化還原過程(鐵還原過程、硫還原過程、產(chǎn)甲烷過程)的關(guān)系,以為發(fā)展污染修復(fù)的優(yōu)化方法和措施提供理論支撐。具體研究內(nèi)容包括:產(chǎn)甲烷條件下,不同電子供體對(duì)PCP還原轉(zhuǎn)化的影響;硫酸鹽還原條件下,不同電子供體對(duì)PCP還原轉(zhuǎn)化的影響;產(chǎn)甲烷過程對(duì)PCP還原轉(zhuǎn)化的影響。獲得的主要研究結(jié)果如下:(1)通過外源添加四種不同電子供體(甲酸鈉、乙酸鈉、丙酮酸鈉、乳酸鈉)設(shè)置了產(chǎn)甲烷條件開展研究,發(fā)現(xiàn)四種不同電子供體的外源添加都可不同程度地促進(jìn)PCP的還原降解,但同時(shí)也促進(jìn)了甲烷排放和有毒害的鐵/硫還原物質(zhì)的形成。在所有試驗(yàn)的電子供體中,丙酮酸鈉對(duì)PCP還原降解的促進(jìn)效果最好,但也造成了最多量的甲烷排放,還加重了土壤中鐵/硫還原物質(zhì)的毒害效應(yīng)。綜合考慮各種因素,乙酸鈉是協(xié)調(diào)PCP還原轉(zhuǎn)化與土壤天然氧化還原過程間相互作用的最佳電子供體,可在促進(jìn)絕大部分PCP還原降解的同時(shí),最大程度避免由外源電子供體添加導(dǎo)致的促進(jìn)甲烷排放和有害鐵/硫還原物質(zhì)形成的負(fù)面效應(yīng)。此外,基于多元統(tǒng)計(jì)的冗余分析(RDA)發(fā)現(xiàn)產(chǎn)甲烷過程和鐵還原過程與PCP的還原脫氯表現(xiàn)為協(xié)同促進(jìn)的關(guān)系。高通量測序結(jié)果揭示培養(yǎng)體系中主要的微生物菌屬為Pseudomonas、Sedimentibacter、Clostridium、Desulfosporosinus、Desulfovibrio、Geosporobacter Thermotalea 和 Methanosaeta、以及 Pelobacteraceae 鋼(該分類以下水平的微生物未檢測到)。結(jié)合化學(xué)指標(biāo)和微生物學(xué)指標(biāo)的動(dòng)態(tài)耦合關(guān)系分析發(fā)現(xiàn),在丙酮酸鈉、乳酸鈉、乙酸鈉處理中,關(guān)鍵功能性脫氯微生物可能包括:Sedimentibacter、Clostridium、Pseudomonas。而其它沒有脫氯功能的細(xì)菌,尤其是鐵還原菌(Pelobacteraceae和Geosporobacter Thermotalea)也可能通過與脫氯功能細(xì)菌間互養(yǎng)關(guān)系間接促進(jìn)PCP的還原脫氯。通過所有還原過程中電子轉(zhuǎn)移當(dāng)量的化學(xué)計(jì)量分析,結(jié)合高通量測序分析揭示的功能微生物的動(dòng)態(tài)變化特征,還可以推測,在電子供體充足的條件下(能確保所有還原過程所需的電子量的消耗),古菌Met淡anosaeta或許可能通過傳遞H2到功能性的脫氯菌來刺激還原脫氯的進(jìn)行。(2)與第(1)部分研究體系相同,進(jìn)一步考慮硫酸鹽的影響作用,通過外源添加硫酸鹽,設(shè)置了硫酸鹽還原條件。通過研究發(fā)現(xiàn),硫酸鹽添加后,增強(qiáng)硫酸鹽還原的條件下,大部分處理中PCP的還原降解速率有所降低,但Fe(Ⅲ)的還原得到促進(jìn)。所試驗(yàn)的電子供體中,丙酮酸鈉和乳酸鈉在促進(jìn)PCP還原降解方面顯示出了最好的效果。同時(shí),RDA分析顯示出與產(chǎn)甲烷條件一致的結(jié)果,即產(chǎn)甲烷過程和鐵還原過程與PCP的還原脫氯表現(xiàn)為協(xié)同促進(jìn)的關(guān)系,但RDA結(jié)果也進(jìn)一步發(fā)現(xiàn)硫酸鹽還原過程與PCP的還原脫氯存在相互抑制的關(guān)系。高通量測序結(jié)果揭示培養(yǎng)體系中主要的微生物屬為Pseudomonas、Sedimentibacter、Clostridium、Desulfosporosinus、Desulfovibrio、GeosporobacterThermotalea 和Methanosaeta以及Pelobacteraceae綱(該分類以下水平的微生物未檢測到)。硫酸鹽還原條件下,在丙酮酸鈉、乳酸鈉、乙酸鈉處理中,關(guān)鍵的功能性脫氯微生物可能包括:Senenetibacter、Clostridiu、Pseudomonas;其它沒有脫氯功能的細(xì)菌,尤其是鐵還原菌(Pelobacteraceae和Geosporobacter Thermotalea)也可能通過與脫氯功能細(xì)菌間互養(yǎng)關(guān)系間接促進(jìn)PCP的還原脫氯;且在電子供體充足的情況下,古菌Methanosaeta可能可以通過傳遞H2到功能性的脫氯菌來刺激還原脫氯過程。這些結(jié)論與產(chǎn)甲烷條件中的發(fā)現(xiàn)一致。有趣的是,化學(xué)指標(biāo)和微生物學(xué)指標(biāo)間的動(dòng)態(tài)耦合關(guān)系還進(jìn)一步支撐增強(qiáng)硫酸鹽還原條件下可能存在與產(chǎn)甲烷條件不同的機(jī)制,即硫酸鹽還原菌(Desulfosporosinus、Desulfovibrio)可能不僅具備還原硫酸鹽的能力,還具備還原Fe(Ⅲ)的能力。此外,硫酸鹽的添加還抑制了典型脫氯菌Dehalobacterium、鐵還原菌Pelobacteraceae、脫氯功能性微生物Sedimentibacter和Pseudomonas的生長,促進(jìn)了硫酸鹽還原菌Desulfosporosinus和Desulfovibrio、脫氯功能性微生物Clostridium、鐵還原菌Geosporobbacter Thermotalea的生長。硫酸鹽的添加對(duì)產(chǎn)甲烷菌的生長沒有影響,只是延緩產(chǎn)甲烷的過程。(3)通過外源添加輔酶M(CoM)或2-溴乙烷磺酸鈉(BES)分別研究了促進(jìn)產(chǎn)甲烷或抑制產(chǎn)甲烷條件下PCP的還原脫氯行為。發(fā)現(xiàn)CoM的添加抑制了土壤中鐵還原菌的生長,促進(jìn)了產(chǎn)甲烷菌的生長,促進(jìn)了 PCP的還原脫氯;產(chǎn)甲烷抑制劑BES的添加促進(jìn)了鐵還原菌的生長,完全抑制了產(chǎn)甲烷菌的生長,抑制了 PCP的還原脫氯。高通量測序結(jié)果揭示培養(yǎng)體系中主要的微生物為Pseudomonas、Sedimentibacter、Desulfosporosinus、Desulfovibrio、Geosporobacter Thermotalea和Methanosaeta以及Pelobacteraceae綱(該分類以下水平的微生物未檢測到)。在本試驗(yàn)中,其關(guān)鍵的功能性脫氯微生物可能有:Sedimentibacter和Pseudomonas。CoM的添加促進(jìn)了Sedimentibacte 的生長、抑制了 Pseudomonas的生長,而BES處理中的情況剛好相反;同時(shí),BES和CoM對(duì)關(guān)鍵的功能性脫氯微生物(Sedimentibacter+ Pseudomonas)的總量沒有影響;此外,古菌 Methanosaeta 是淹水土壤PCP還原脫氯過程中的關(guān)鍵微生物。結(jié)合化學(xué)指標(biāo)和微生物學(xué)指標(biāo)間的動(dòng)態(tài)耦合關(guān)系可推測:因土壤產(chǎn)甲烷過程是與PCP還原脫氯協(xié)同促進(jìn)的過程,BES因此可通過抑制產(chǎn)甲烷進(jìn)而抑制PCP的還原轉(zhuǎn)化。
[Abstract]:Pentachlorophenol (PCP) is a toxic, teratogenic, carcinogenic "three letter" Chloroorganics, because of its difficult degradation in the environment, and is listed as priority pollutants.PCP used as herbicides, pesticides, wood preservatives is widely used in the world, causing soil pollution reduction transformation in soil. PCP is the main microorganism in biochemical process. In general, there is a natural iron reduction, reduction of sulfur in soil, methane production, and the typical reduction process in flooded anaerobic conditions more active. Therefore, soil, especially the reduction in waterlogged soil PCP and typical soil inevitable oxidation reduction process the existence of mutual contact. Studied under anaerobic conditions for reductive dechlorination of PCP in soil and typical redox process (the process of iron reduction, sulfur reduction, methanogenesis) relationship, that optimization methods and measures of developing pollution remediation Application to provide theoretical support. The research contents include: under methanogenic conditions, different electron donor reduction effect on PCP; sulfate reducing conditions, different electron donor reduction effect on PCP; methane production reduction effect on PCP. The main research results are as follows: (1) by adding exogenous four different electron donor (sodium formate, sodium acetate, sodium pyruvate, sodium lactate) set methanogenic conditions to carry out the research, found that four different kinds of exogenous electron donor addition can be promoted the reduction of PCP degradation, but also to promote the formation of methane emissions and toxic iron / sulfur reducing substances. All the test in the electronic donor, reduction effect best degradation of PCP sodium pyruvate, but also caused the greatest amount of methane emission, but also increased the poison effect of soil iron / sulfur reducing substances is taken into account. A variety of factors, is the best sodium electron interaction coordination PCP transformation and reduction of soil natural redox processes between the donor in the reductive degradation and promote the vast majority of PCP, the maximum extent to avoid the negative effects caused by adding promote methane emissions and harmful iron / sulfur reducing substances formed by exogenous electron donor. In addition, the multiple redundancy analysis based on the statistics (RDA) found that the methane production process and the process of iron reduction and reductive dechlorination of PCP showed synergistic relationship. High-throughput sequencing results reveal that microbial culture system mainly belong to Pseudomonas, Sedimentibacter, Clostridium, Desulfosporosinus, Desulfovibrio, Geosporobacter, Thermotalea and Methanosaeta, and the Pelobacteraceae steel (the following level classification the microorganism was not detected). Combined with the dynamic analysis of coupled chemical index and the relationship between microbiological indicators Found in sodium pyruvate, sodium lactate, sodium acetate processing, key functional dechlorinating microorganisms may include: Sedimentibacter, Clostridium, Pseudomonas. and other no dechlorination function of bacteria, especially iron reducing bacteria (Pelobacteraceae and Geosporobacter Thermotalea) may also with the dechlorination function between bacteria syntrophic relationships indirectly promote the reduction of PCP dechlorination. The stoichiometric equivalent electron transfer all reduction process of analysis, combined with the dynamic characteristics of high-throughput sequencing analysis revealed the function of microorganisms, can also speculate on the electron donor under the condition of enough (to ensure that the amount of electronic all required reduction of consumption), archaea Met light may by anosaeta transfer H2 into functional dechlorinating bacteria to stimulate the reduction of dechlorination. (2) and (1) part of the same system, further considering the effect of sulfate on. A set of exogenous sulfate, sulfate reducing conditions. It is found that the sulfate added, enhanced under conditions of sulfate reduction, the reduction rate degradation of most treatments of PCP decreased, but Fe (III) reduction was promoted. The electron donor, sodium pyruvate and lactate in promoting PCP degradation showed the best effect. At the same time, RDA analysis showed the same results with methanogenic conditions, namely reducing methane and iron reduction and dechlorination of PCP showed synergistic relationship, but the RDA results also further found that sulfate reduction and reductive dechlorination of PCP due to the mutual inhibition. High throughput sequencing results reveal the main microbial culture system for Pseudomonas, Sedimentibacter, Clostridium, Desulfosporosinus, Desulfovibrio, GeosporobacterThermotalea and Methanosae The TA and Pelobacteraceae classes (the classification below the level of microorganism was not detected). Under sulfate reducing conditions, the sodium pyruvate, sodium lactate, sodium acetate in treatment of functional microbial dechlorination key may include: Senenetibacter, Clostridiu, Pseudomonas; no other dechlorination function of bacteria, especially iron reducing bacteria (Pelobacteraceae and Geosporobacter Thermotalea) may also be through the dechlorination function and inter dependent relationship between bacteria indirectly promotes the reductive dechlorination of PCP; and the electron donor is sufficient, archaea Methanosaeta may pass through the H2 into functional dechlorinating bacteria to stimulate the dechlorination process. These conclusions and findings in the same methanogenic condition. Interestingly, the dynamic coupling relationship between chemical indicators and microbiological indicators also support further reducing conditions of sulfate and methane may exist under different conditions The mechanism that sulfate reducing bacteria (Desulfosporosinus, Desulfovibrio) may not only have the ability of sulfate reduction, with reduction of Fe (III) ability. In addition, adding sulfate inhibited the typical dechlorinating bacteria Dehalobacterium, iron reducing bacteria Pelobacteraceae, dechlorination of functional microbial Sedimentibacter and Pseudomonas growth, promoting sulfate reduction strains Desulfosporosinus and Desulfovibrio, the functional microbial dechlorination of Clostridium Geosporobbacter Thermotalea, iron reducing bacteria growth. Adding sulfate has no effect on the growth of methanogens, only delayed methanogenic process. (3) by adding exogenous coenzyme M (CoM) or 2- bromoethanesulfonic acid sodium (BES) were studied to promote reduction dechlorination behaviors of methane or inhibit methanogenic conditions. PCP found that the addition of CoM inhibited soil iron reducing bacteria growth, promote the production of methane The growth of bacteria, promote the reductive dechlorination of PCP; methanogenic inhibitor BES could effectively promote the growth of iron reducing bacteria, completely inhibited the growth of methanogens, inhibited the reductive dechlorination of PCP. High throughput sequencing results reveal the main microbial culture system for Pseudomonas, Sedimentibacter, Desulfosporosinus, Desulfovibrio, Geosporobacter Thermotalea and Methanosaeta and Pelobacteraceae classes (the classification below the level of microorganism was not detected). In this experiment, the key function of dechlorinating microorganisms may include: Sedimentibacter and Pseudomonas.CoM could effectively promote the growth of Sedimentibacte, inhibited the growth of Pseudomonas and BES in the treatment of the contrary; at the same time, BES and the CoM dechlorinating microorganisms on functional key (Sedimentibacter+ Pseudomonas) did not affect the total; in addition, archaea Methanosaeta flooding Water soil PCP reducing key microbial dechlorination process. Combined with the dynamic coupling relationship between chemical indicators and microbiological indicators can be speculated: because the soil methane production is promoted dechlorination process with PCP reduction, reduction and transformation BES therefore can inhibit methane production and inhibition of PCP.
【學(xué)位授予單位】:浙江大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X53
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 崔松林,丁建華,武雨欣;影響魚池水與泥體系硫酸鹽還原因素的實(shí)驗(yàn)研究[J];水產(chǎn)學(xué)報(bào);1991年03期
2 劉廣民;張照韓;陳忠喜;魏利;任南琪;;利用反硝化抑制硫酸鹽還原的連續(xù)流試驗(yàn)研究[J];中國給水排水;2007年05期
3 丁雷;祁佩時(shí);黃華山;劉智曉;;微氧環(huán)境抑制硫酸鹽還原反應(yīng)作用研究[J];哈爾濱商業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年02期
4 郭夏麗;程小萍;鄭平;梅玲玲;;磷化氫對(duì)硫酸鹽還原的影響[J];浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版);2008年01期
5 徐慧緯;張旭;楊?yuàn)檴?李廣賀;;常壓供氫體系電場強(qiáng)化硫酸鹽還原生物-電化學(xué)效應(yīng)研究[J];環(huán)境科學(xué);2009年07期
6 馮穎,康勇,范福洲,孔琦;單質(zhì)鐵強(qiáng)化生物還原法處理硫酸鹽廢水[J];中國給水排水;2005年07期
7 趙陽國;任南琪;王愛杰;劉一威;;鐵元素對(duì)硫酸鹽還原過程的影響及微生物群落響應(yīng)[J];中國環(huán)境科學(xué);2007年02期
8 譚文捷;丁愛中;王金生;;硫酸鹽還原條件下多環(huán)芳烴在土壤中的遷移轉(zhuǎn)化[J];環(huán)境科學(xué)研究;2009年02期
9 王千紅;金寶華;程曉玲;;水解酸化池中硫酸鹽還原及抑制效果研究[J];供水技術(shù);2011年01期
10 丁寧;黃進(jìn)剛;聞岳;許越;周琪;;硝基苯對(duì)硫酸鹽還原過程的影響[J];環(huán)境工程學(xué)報(bào);2013年01期
相關(guān)會(huì)議論文 前4條
1 陳家輝;商U_;陳光浩;;以甲烷為單一碳源的脫氮及硫酸鹽還原[A];2011中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第二卷)[C];2011年
2 丁海;姚素平;陳駿;;重金屬離子對(duì)混合SRB菌群的硫酸鹽還原速率抑制研究[A];中國礦物巖石地球化學(xué)學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文摘要專輯[C];2013年
3 田濤;張代鈞;李玉蓮;孫陶陶;何強(qiáng);;重慶園博園龍景湖水體硫酸鹽還原及氮化物和TOC的影響[A];2014中國環(huán)境科學(xué)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集(第五章)[C];2014年
4 趙本良;仇榮亮;劉金芩;黃雄飛;李清飛;王詩忠;石寧;;一株硫酸鹽還原細(xì)菌的篩選及其功能研究[A];第十次全國環(huán)境微生物學(xué)術(shù)研討會(huì)論文摘要集[C];2007年
相關(guān)重要報(bào)紙文章 前2條
1 蕭蓮;在高溫季節(jié)應(yīng)適當(dāng)補(bǔ)施磷肥和氮肥[N];東方城鄉(xiāng)報(bào);2010年
2 倪永華;鐵管道腐蝕之謎揭開[N];科技日?qǐng)?bào);2004年
相關(guān)博士學(xué)位論文 前9條
1 陳明翔;Desulfovibrio sp. CMX還原煙氣脫硫脫硝絡(luò)合溶液過程特性研究[D];大連理工大學(xué);2015年
2 徐熙俊;微氧碳氮硫共脫除工藝的運(yùn)行效能及數(shù)學(xué)模擬[D];哈爾濱工業(yè)大學(xué);2015年
3 遠(yuǎn)野;廢水碳氮硫污染物共脫除工藝調(diào)拉與生物硫回收參數(shù)優(yōu)化[D];哈爾濱工業(yè)大學(xué);2015年
4 周杰民;嗜鹽嗜堿微生物法煙氣處理的基礎(chǔ)研究[D];中國科學(xué)院研究生院(過程工程研究所);2015年
5 康緒明;黃東海沉積物中還原無機(jī)硫的形態(tài)特征及影響因素研究[D];中國海洋大學(xué);2015年
6 趙陽國;生態(tài)因子對(duì)硫酸鹽還原系統(tǒng)中微生物群落動(dòng)態(tài)影響的表征[D];哈爾濱工業(yè)大學(xué);2006年
7 馮穎;硫酸鹽還原菌與Fe~0協(xié)同處理含重金屬酸性廢水的研究[D];天津大學(xué);2004年
8 李巍;廢水同步生物脫氮除硫特性與效能研究[D];哈爾濱工業(yè)大學(xué);2008年
9 夏芳芳;垃圾生物覆蓋土對(duì)填埋氣中H_2S的凈化作用及機(jī)理研究[D];浙江大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 苗得露;高硫酸鹽廢水碳氮硫共脫除工藝的實(shí)驗(yàn)研究[D];河北科技大學(xué);2014年
2 馮曦;厭氧條件下土壤典型氧化還原過程對(duì)五氯酚還原轉(zhuǎn)化的影響[D];浙江大學(xué);2017年
3 徐巖;基于遺傳神經(jīng)網(wǎng)絡(luò)的產(chǎn)酸—硫酸鹽還原系統(tǒng)建模研究[D];哈爾濱理工大學(xué);2007年
4 喬佳妮;水稻土硫酸鹽還原作用對(duì)多氯聯(lián)苯消減的影響研究[D];浙江大學(xué);2014年
5 侯丹丹;硫酸鹽還原相反應(yīng)器研究[D];西安工程大學(xué);2011年
6 張璐;膠州灣沉積物中硫酸鹽還原和鐵異化還原的影響因素研究[D];中國海洋大學(xué);2014年
7 畢建培;硫酸鹽還原與反硝化脫硫工藝耦合及碳氮硫去除效能研究[D];哈爾濱工業(yè)大學(xué);2009年
8 唐紅玲;微生物煙氣脫硫系統(tǒng)中硫酸鹽生物還原過程研究[D];江南大學(xué);2008年
9 劉一威;不同工藝條件下硫酸鹽還原反應(yīng)器微生物群落動(dòng)態(tài)分析[D];哈爾濱工業(yè)大學(xué);2006年
10 桂冠;脫硫腸狀菌的培養(yǎng)及還原硫酸鹽的試驗(yàn)研究[D];武漢理工大學(xué);2013年
,本文編號(hào):1438529
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1438529.html