膠州灣西岸某泥質(zhì)潮灘地下水—海水相互交換及營(yíng)養(yǎng)鹽遷移研究
本文關(guān)鍵詞:膠州灣西岸某泥質(zhì)潮灘地下水—海水相互交換及營(yíng)養(yǎng)鹽遷移研究 出處:《中國(guó)地質(zhì)大學(xué)(北京)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 膠州灣 數(shù)值模擬 海底地下水排泄(SGD) 爬高效應(yīng) 營(yíng)養(yǎng)鹽
【摘要】:泥質(zhì)潮灘對(duì)于增加土地資源、海岸防護(hù)和保持生物多樣性等具有重要作用。潮間帶是地下水-海水作用劇烈的區(qū)域,也是營(yíng)養(yǎng)鹽和污染物的重要載體。分析地下水-海水相互作用機(jī)理對(duì)于研究淤泥質(zhì)潮灘的營(yíng)養(yǎng)鹽和污染物遷移、生物特性具有重要的現(xiàn)實(shí)意義。本文研究區(qū)位于膠州灣西岸紅石崖鎮(zhèn)的一個(gè)長(zhǎng)約3000米坡度約為0.1%的泥質(zhì)潮灘。沿剖面均勻布設(shè)8組垂向上固定距離的“對(duì)井”來監(jiān)測(cè)地下水水位、電導(dǎo)率和溫度,監(jiān)測(cè)時(shí)間持續(xù)約20天,每小時(shí)記錄一次數(shù)據(jù)。原位降水頭實(shí)驗(yàn)測(cè)得典型井的垂向滲透系數(shù)變化范圍為4.37×10-8~1.12×10-6m/s,鹽度變化范圍為26.23~31.52g/L;趶V義達(dá)西定律估算出剖面100小時(shí)中平均海底地下水排泄(SGD)和海水入滲量(Inflow)分別為2.24和1.77m2/d。以本研究區(qū)所屬多層含水系統(tǒng)為研究對(duì)象,結(jié)合野外監(jiān)測(cè)數(shù)據(jù)和實(shí)際情況建立了一個(gè)二維垂直剖面模型,利用數(shù)值模擬軟件MARUN進(jìn)行了地下水-海水相互交換量的數(shù)值模擬。定量探究了滲透系數(shù)、滲出面和海潮爬高效應(yīng)等因素對(duì)地下水流的影響,對(duì)模型表、中層的滲透系數(shù)和爬高效應(yīng)進(jìn)行敏感性分析。通過試錯(cuò)法首次將各組井觀測(cè)水頭值和地下水-海水交換量進(jìn)行同時(shí)擬合,評(píng)估了各模型參數(shù)對(duì)模擬結(jié)果的影響,并對(duì)該研究區(qū)的地下水流進(jìn)行了分析,得出以下主要結(jié)論:(1)潮灘發(fā)育了大范圍的滲出面,最大長(zhǎng)度達(dá)2266m,并隨潮汐波動(dòng)呈周期性變化。(2)相比于中層滲透系數(shù)的變化,水頭值和地下水流速模擬結(jié)果對(duì)表層滲透系數(shù)更敏感,海潮爬高效應(yīng)對(duì)大尺度泥質(zhì)潮灘水陸邊界附近有顯著影響。(3)地形轉(zhuǎn)折點(diǎn)(波折點(diǎn))對(duì)地下水流有顯著影響,最大流速(流入:17.08mm/d,流出:5.50mm/d)均發(fā)生在波折點(diǎn)附近區(qū)域,顯示波折點(diǎn)在地下水補(bǔ)給和排泄過程中起重要作用。數(shù)值模擬結(jié)果表明,在該剖面上100小時(shí)中SGD和Inflow平均值分別為2.16和1.60m2/d,與對(duì)井法直接觀測(cè)計(jì)算的結(jié)果差別不大。滲出面排泄SGD占總SGD的85.6%。通過該剖面上營(yíng)養(yǎng)鹽數(shù)據(jù)分析得出以下結(jié)論:常規(guī)離子分析顯示研究區(qū)受到了海水和地下水的共同影響,各井中地下水的亞硝酸鹽氮和硝酸鹽氮遠(yuǎn)大于海水中對(duì)應(yīng)的濃度,很可能是因?yàn)榛S排放以及反硝化作用共同作用的結(jié)果,各井中地下水DIN/DIP比值遠(yuǎn)大于Redfield比值,很可能是由于生活污水和工業(yè)廢水排放。
[Abstract]:Muddy tidal flat plays an important role in increasing land resources, coastal protection and maintaining biodiversity. It is also an important carrier of nutrients and pollutants. The mechanism of groundwater-seawater interaction is used to study the transport of nutrients and pollutants in muddy tidal flat. Biological characteristics are of great practical significance. This study area is located in Hongshiya town, west coast of Jiaozhou bay, a muddy tidal flat with a slope of about 3, 000m and a slope of about 0.1%. Eight groups of vertical fixed distances are arranged evenly along the section. " To monitor the groundwater level. Electrical conductivity and temperature were monitored for about 20 days. The vertical permeability coefficient of a typical well measured by in-situ precipitation head experiment is 4.37 脳 10 ~ (-8) m / s, 1.12 脳 10 ~ (-6) m / s. The variation range of salinity is 26.23 ~ 31.52g / L. based on the generalized Darcy's law, the average undersea groundwater discharge (SGD) and seawater infiltration (Inflow) are estimated in 100 hours. 2.24 and 1.77 m2 / d, respectively. The multi-layer water cut system in this study area was taken as the research object. Based on the field monitoring data and the actual situation, a two-dimensional vertical profile model is established. The numerical simulation of the groundwater / seawater exchange is carried out by using the numerical simulation software MARUN, and the permeability coefficient is quantitatively explored. The influence of seepage surface and tide climbing effect on groundwater flow, and on the model table. The sensitivity analysis of permeability coefficient and climbing effect in the middle layer was carried out. The observed water head value and groundwater sea water exchange amount were fitted simultaneously by trial and error method for the first time, and the effects of model parameters on the simulation results were evaluated. Based on the analysis of the groundwater flow in the study area, the following main conclusions are drawn: (1) the tidal flat has developed a large scale exudation surface, the maximum length of which is 2266m. The water head value and groundwater velocity simulation results are more sensitive to the surface permeability coefficient than the change of the middle permeability coefficient. The effect of sea tide climbing has a significant effect on the land and water boundary near the large scale muddy tidal flat.) the topographic turning point (zigzag point) has a significant effect on the groundwater flow, and the maximum velocity (the flow velocity is 17.08 mm / d). The outflow: 5.50mm / d) occurs in the region near the breakout point, which shows that the corrugated point plays an important role in the process of groundwater recharge and discharge. The numerical simulation results show that the corrugated point plays an important role in the groundwater recharge and discharge process. The average values of SGD and Inflow were 2.16 and 1.60 m2 / d in the 100h section, respectively. There is little difference between the results of direct observation and calculation of the well method. The exudation surface excretion SGD accounts for 85.6% of the total SGD. Through the analysis of the nutrient data on the profile, the following conclusions are obtained:. Conventional ion analysis showed that the study area was affected by both seawater and groundwater. The concentration of nitrite nitrogen and nitrate nitrogen in groundwater in each well is much higher than the corresponding concentration in seawater, which is probably due to the combined effect of chemical plant discharge and denitrification. The DIN/DIP ratio of groundwater in each well is much higher than that of Redfield, which is probably due to the discharge of domestic sewage and industrial wastewater.
【學(xué)位授予單位】:中國(guó)地質(zhì)大學(xué)(北京)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:P641.2;P731.2;X143
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王寧舸;龔政;張長(zhǎng)寬;趙X;耿亮;;淤泥質(zhì)潮灘地貌演變中的水動(dòng)力及生物過程研究進(jìn)展[J];海洋工程;2016年01期
2 李海龍;王學(xué)靜;;海底地下水排泄研究回顧與進(jìn)展[J];地球科學(xué)進(jìn)展;2015年06期
3 郭占榮;馬志勇;章斌;袁曉婕;劉花臺(tái);劉潔;;采用~(222)Rn示蹤膠州灣的海底地下水排泄及營(yíng)養(yǎng)鹽輸入[J];地球科學(xué)(中國(guó)地質(zhì)大學(xué)學(xué)報(bào));2013年05期
4 LI HaiLong;JIAO JiuJimmy;;Quantifying tidal contribution to submarine groundwater discharges: A review[J];Chinese Science Bulletin;2013年25期
5 馬立杰;楊曦光;祁雅莉;劉艷霞;張金枝;;膠州灣海域面積變化及原因探討[J];地理科學(xué);2014年03期
6 李海龍;萬力;焦赳赳;;海岸帶水文地質(zhì)學(xué)研究中的幾個(gè)熱點(diǎn)問題[J];地球科學(xué)進(jìn)展;2011年07期
7 于寧;郭佩芳;呂忻;李立立;;膠州灣海岸線的演變與發(fā)展對(duì)策研究[J];海洋湖沼通報(bào);2010年04期
8 呂新剛;趙昌;夏長(zhǎng)水;喬方利;;膠州灣水交換及灣口潮余流特征的數(shù)值研究[J];海洋學(xué)報(bào)(中文版);2010年02期
9 劉貫群;葉玉玲;袁瑞強(qiáng);韓曼;陳浩;;近年膠州灣陸源SGD及其營(yíng)養(yǎng)鹽輸送[J];海洋環(huán)境科學(xué);2007年06期
10 彭曉彤,周懷陽(yáng);海岸帶營(yíng)養(yǎng)鹽生物地球化學(xué)研究評(píng)述[J];海洋通報(bào);2002年03期
相關(guān)博士學(xué)位論文 前5條
1 馬倩;地下水—海水相互交換量化研究[D];中國(guó)地質(zhì)大學(xué)(北京);2016年
2 史經(jīng)昊;膠州灣演變對(duì)人類活動(dòng)的響應(yīng)[D];中國(guó)海洋大學(xué);2010年
3 龍海燕;膠州灣鹽沼有孔蟲分布特征及其環(huán)境意義研究[D];中國(guó)海洋大學(xué);2009年
4 張學(xué)慶;近岸海域環(huán)境數(shù)學(xué)模型研究及其在膠州灣的應(yīng)用[D];中國(guó)海洋大學(xué);2006年
5 楊桂山;中國(guó)海岸環(huán)境變化及其區(qū)域響應(yīng)[D];中國(guó)科學(xué)院研究生院(南京地理與湖泊研究所);2001年
相關(guān)碩士學(xué)位論文 前5條
1 楊曉tq;環(huán)膠州灣地區(qū)海水入侵災(zāi)害評(píng)價(jià)與預(yù)測(cè)[D];青島大學(xué);2010年
2 尚杰;青島海岸帶規(guī)劃與城市發(fā)展[D];中國(guó)海洋大學(xué);2005年
3 白偉明;膠州灣工程地質(zhì)環(huán)境特征研究[D];中國(guó)海洋大學(xué);2005年
4 楊炳超;地下水質(zhì)量綜合評(píng)價(jià)方法的研究[D];長(zhǎng)安大學(xué);2004年
5 葛明;膠州灣氮、磷營(yíng)養(yǎng)鹽循環(huán)收支動(dòng)力學(xué)模型及其應(yīng)用[D];中國(guó)海洋大學(xué);2003年
,本文編號(hào):1433862
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1433862.html