基于垂直折流式生物膜反應(yīng)器加速三氯酚與硫酸鹽生物降解研究
本文關(guān)鍵詞:基于垂直折流式生物膜反應(yīng)器加速三氯酚與硫酸鹽生物降解研究 出處:《上海師范大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 生物膜反應(yīng)器 三氯酚 硫酸鹽 生物降解
【摘要】:隨著現(xiàn)代化工業(yè)的發(fā)展,印染廠、造紙廠常將硫酸鹽與氯酚類化合物作為工藝的輔助材料和化工原料,使此類工業(yè)廢水中不僅含有高濃度的氯酚類化合物,還含有大量的硫酸鹽。一方面,氯酚類化合物是一種具有“致癌、致畸、致突變”特性的難降解有機(jī)物,進(jìn)入環(huán)境后將對人類的健康和生態(tài)環(huán)境造成嚴(yán)重的危害,另一方面,由于硫酸鹽的存在將會導(dǎo)致含氯酚類化合物的廢水在處理上受到影響。而現(xiàn)有處理氯酚類廢水和硫酸鹽廢水的方法主要采用生物處理技術(shù),生物處理技術(shù)具有即經(jīng)濟(jì)又易管理等優(yōu)點(diǎn)。本研究采用搖瓶作為生物反應(yīng)器,通過控制搖瓶開口時間,了解厭氧與缺氧環(huán)境下2,4,6-三氯酚(2,4,6-TCP)生物降解情況,進(jìn)一步采用垂直折流式生物膜反應(yīng)器處理2,4,6-TCP及探索硫酸鹽存在下,2,4,6-TCP與硫酸鹽生物降解過程中對外加電子供體的關(guān)系,并探討最佳碳源量的選擇,結(jié)果表明:1、通過搖瓶實(shí)驗(yàn)發(fā)現(xiàn),當(dāng)在厭氧時,2,4,6-TCP主要以還原脫氯的形式將多氯酚轉(zhuǎn)換成低氯酚,而低氯酚在厭氧環(huán)境下很難進(jìn)一步生物降解,而在有一定溶解氧的情況時,可迅速達(dá)到生物降解。因此,采用先厭氧后好氧的形式處理2,4,6-TCP能有效提高2,4,6-TCP生物降解。2、在2,4,6-TCP還原脫氯過程所產(chǎn)生的一級中間產(chǎn)物2,4-DCP對2,4,6-TCP生物降解過程存在一定的抑制作用,二級產(chǎn)物4-CP對一級產(chǎn)物2,4-DCP生物降解過程存在一定的抑制作用,二級產(chǎn)物4-CP對2,4,6-TCP生物過程剛影響不大,因此對于2,4,6-TCP的生物脫氯反應(yīng)過程中,各中間產(chǎn)物是逐級影響上一級,而非跨級影響,可通過加速4-CP的生物降解來逐級提高2,4,6-TCP的生物降解速率。3、通過加入易降解的丙酸鈉、乙酸鈉和葡萄糖作為外加碳源進(jìn)行實(shí)驗(yàn)可得,丙酸鈉、乙酸鈉和葡萄糖均可作為有效提高2,4,6-TCP還原脫氯的外加電子供體,而對于硫酸鹽還原過程中丙酸鈉作為電子供體要高于乙酸鈉和葡萄糖作為電子供體進(jìn)行生物處理。另一方面,利用葡萄糖作為電子供體時2,4,6-TCP轉(zhuǎn)化成2,4-DCP的轉(zhuǎn)化率最大,而轉(zhuǎn)化成4-MCP的轉(zhuǎn)化率最小,利用乙酸鈉作為電子供體時2,4,6-TCP轉(zhuǎn)化成2,4-DCP的轉(zhuǎn)化率最小,而轉(zhuǎn)化成4-MCP的轉(zhuǎn)化率最大。4、隨著增加外加電子供體的量,可以有效地提高2,4,6-TCP和硫酸鹽生物降解速率;同時生物降解2,4,6-TCP與硫酸鹽時,2,4,6-TCP還原脫氯過程與硫酸鹽還原過程對電子存在著競爭關(guān)系,2,4,6-三氯酚還原脫氯對電子的競爭能力強(qiáng)于硫酸鹽還原過程對電子的競爭能力;而對于本實(shí)驗(yàn)采用的垂直折流式生物膜反應(yīng)器降解50μM 2,4,6-三氯酚和0.28 mM的硫酸鹽混合廢水時,最佳碳源量還可控制在1.08 mmol左右。
[Abstract]:With the development of modern industry, sulphate and chlorophenol compounds are often used as auxiliary materials and chemical raw materials in printing and dyeing factories and paper mills, which make such industrial wastewater contain not only high concentration of chlorophenol compounds. On the one hand, chlorophenols are refractory organic compounds with the characteristics of "carcinogenesis, teratogenicity, mutagenicity". Entering the environment will cause serious harm to human health and ecological environment, on the other hand. Due to the presence of sulfate, the treatment of wastewater containing chlorophenols will be affected, while the existing treatment methods of chlorophenol wastewater and sulfate wastewater are mainly biological treatment technology. The biological treatment technology is economical and easy to manage. In this study, the shaking flask was used as a bioreactor. By controlling the opening time of the shaking flask, we could understand the 2 ~ (4) O ~ (4) -trichlorophenol ~ (2 +) -trichlorophenol 2 ~ (4) in anaerobic and anoxic environment. The biodegradation of 6-TCPwas further treated by vertical biofilm biofilm reactor, and the treatment of 2-TCP-6-TCP in the presence of sulphate was explored. The relationship between 6-TCP and the external electron donor in the process of sulfate biodegradation and the selection of the optimum carbon source were discussed. 6-TCP mainly converts polychlorophenol to low chlorophenol in the form of reductive dechlorination, which is difficult to biodegrade in anaerobic environment, but when there is a certain amount of dissolved oxygen. Biodegradation can be achieved rapidly. Therefore, the treatment of 2n4N 6-TCP in the form of first anaerobic and then aerobic treatment can effectively increase the biodegradation of 2O4C6TCP, at 2O4. The first intermediate product 2n4-DCP produced by the reduction dechlorination process of 6-TCP has a certain inhibitory effect on the biodegradation process of 2n4N 6-TCP, and the second product 4-CP has a certain effect on the first product 2. 4-DCP biodegradation process has a certain inhibitory effect, the secondary product 4-CP has little effect on the biological process of 2Con 4N 6-TCP, so it has little effect on 2O4. In the biological dechlorination reaction of 6-TCP, each intermediate product has a step by step effect, not a cross-stage effect, which can be increased by accelerating the biodegradation of 4-CP step by step. The biodegradation rate of 6-TCP. 3 was obtained by adding readily degradable sodium propionate, sodium acetate and glucose as additional carbon source. 6-TCP reductive dechlorination of the external electron donor, but in the sulfate reduction process, sodium propionate as an electronic donor is higher than sodium acetate and glucose as electronic donor biological treatment. On the other hand. When glucose was used as electron donor, the conversion rate of 2o 4N 6-TCP was the highest, and the conversion rate of conversion to 4-MCP was the lowest. When sodium acetate was used as electron donor, the conversion rate was 2H4. The conversion rate of 6-TCP to 2n4-DCP was the smallest, while the conversion rate of 4-MCP was the largest. With the increase of the amount of additional electron donor, the conversion rate of 6-TCP was the lowest and the conversion of 4-MCP was the largest. 6-TCP and sulfate biodegradation rate; At the same time, there is a competitive relationship between the reduction dechlorination process and the sulfate reduction process. The competitive power of 6- trichlorophenol to electrons is stronger than that of sulfate reduction. The vertical baffled biofilm reactor was used to degrade 50 渭 M 2N 4 trichlorophenol and 0.28 mm sulphate mixed wastewater. The optimum carbon source can also be controlled at about 1. 08 mmol.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X703
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李蓉潔;白琪;陳斌;楊立輝;張永明;;添加有機(jī)酸加速2,4,6-三氯酚的生物降解[J];河南城建學(xué)院學(xué)報;2014年04期
2 萬金泉;胡夢蝶;馬邕文;黃明智;;不同電子供體下三氯苯酚的還原脫氯機(jī)制研究[J];環(huán)境科學(xué);2013年05期
3 馮鐘敏;胡筱敏;董怡華;王燕;;光合細(xì)菌黑暗好氧降解2-氯酚的特性研究[J];環(huán)境科學(xué)與技術(shù);2010年12期
4 王旭剛;孫麗蓉;;五氯酚的污染現(xiàn)狀及其轉(zhuǎn)化研究進(jìn)展[J];環(huán)境科學(xué)與技術(shù);2009年08期
5 王曉東;張光輝;顧平;孫紅曄;;水體中氯酚類污染物的生物降解性研究進(jìn)展[J];中國給水排水;2008年16期
6 劉興平;;氯酚類有機(jī)污染物的生物降解研究進(jìn)展[J];水資源保護(hù);2008年04期
7 ;Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed[J];Journal of Environmental Sciences;2007年03期
8 張奎;劉海成;;產(chǎn)酸脫硫反應(yīng)器中COD/SO_4~(2-)比對硫酸鹽去除率的影響研究[J];科學(xué)技術(shù)與工程;2007年06期
9 易正戟;譚凱旋;澹愛麗;趙龍?jiān)?;硫酸鹽還原菌及其在工業(yè)和礦山廢水治理中的應(yīng)用[J];云南師范大學(xué)學(xué)報(自然科學(xué)版);2006年03期
10 陳元彩,藍(lán)惠霞,陳中豪;固定化好氧菌和厭氧顆粒污泥在不同供氧條件下降解氯酚的研究[J];環(huán)境科學(xué)學(xué)報;2005年02期
相關(guān)碩士學(xué)位論文 前10條
1 李蓉潔;外源電子供體在加速2,4,6-三氯酚生物降解中的作用[D];上海師范大學(xué);2015年
2 范燕燕;環(huán)境激素2,4,6-三氯苯酚的微生物降解特征及固定化研究[D];揚(yáng)州大學(xué);2013年
3 胡夢蝶;造紙廢水中2,4,,6-三氯苯酚對厭氧顆粒污泥的毒性影響及其還原脫氯機(jī)理研究[D];華南理工大學(xué);2012年
4 張曉明;降溫結(jié)晶-Fenton-SBR聯(lián)合處理高硫酸鹽有機(jī)廢水的研究[D];湖南大學(xué);2011年
5 畢建培;硫酸鹽還原與反硝化脫硫工藝耦合及碳氮硫去除效能研究[D];哈爾濱工業(yè)大學(xué);2009年
6 尚文燕;生物法處理酸性含鋅硫酸鹽廢水[D];吉林大學(xué);2009年
7 李山虎;負(fù)載型氧化鐵吸附劑的制備及對五氯苯酚作用研究[D];武漢理工大學(xué);2008年
8 程婷;零價鐵強(qiáng)化2,4-二氯酚還原脫氯的效應(yīng)及機(jī)理研究[D];湘潭大學(xué);2008年
9 王欣;ABR處理硫酸鹽有機(jī)廢水及微生態(tài)研究[D];河北工程大學(xué);2007年
10 李芬芳;超聲波/零價鐵協(xié)同降解氯酚類有機(jī)物的機(jī)理及其構(gòu)性關(guān)系研究[D];湘潭大學(xué);2006年
本文編號:1372122
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1372122.html