MIRT補償模型與非補償模型的比較研究及其應用
[Abstract]:In this paper, by using BMIRT software, we set up different experimental conditions: sample size (1000 and 3000) 脳 subject quantity (25 and 50) 脳 ability correlation (0. 3 and 0. 7) to simulate the generation of multi dimensional three parameter compensation data and non compensation data. The multi-dimensional three parameter compensation model and the non-compensation model are used to estimate the parameters. By comparing the RMSE values of the project parameters and the capability parameters, the parameter fidelity comparison between the multi-dimensional compensation model and the non-compensation model under various experimental conditions is realized. The results show that the parametric fidelity of the three-parameter multi-dimensional compensation model is better than that of the three-parameter multi-dimensional non-compensation model, regardless of whether it is the estimation of the multi-dimensional compensation data or the non-compensated data. In particular, when estimating multidimensional compensation data, the capability parameter RMSE estimated by the three-parameter multi-dimensional compensation model is almost half of that of the three-parameter multi-dimensional non-compensation model, which is significantly better than the capability parameter fidelity of the three-parameter non-compensation model estimation. The multi-dimensional item response theory compensation model and the non-compensation model are also applied to the Raven advanced reasoning test. It is found that the multidimensional compensation model fits better than the multidimensional non-compensation model. In this study, the multidimensional item response theory compensation model was used to deeply analyze the advanced Raven reasoning test, and to explore the quality, difficulty and cognitive components of the Raven advanced reasoning test. The results show that the overall classification of Raven advanced reasoning test is good and the project difficulty increases with the increase of item order. In the five ability dimensions, the difficulty of cognitive components in the Raven Advanced reasoning Test was increased by A / S / C / PPD _ 3 and D _ 2 respectively. Finally, on the basis of multi-dimensional compensation model and non-compensation model to estimate the ability parameters of the Raven advanced reasoning test, the interaction between the ability of the participants in solving the Raven advanced reasoning test items is analyzed. The results show that there is a mutual compensation relationship between CR,PP and D3 ability and between A / S and D _ 2 ability in solving Raven advanced reasoning test items. Finally, this paper points out the deficiency of this research and puts forward the prospect of future research.
【學位授予單位】:江西師范大學
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:B841
【參考文獻】
相關期刊論文 前10條
1 戴海崎,劉聲濤;瑞文測驗項目認知難度因素分析及LLTM擬合驗證[J];心理與行為研究;2004年02期
2 黎光明;張敏強;;先驗信息對MCMC方法估計概化理論方差分量變異量的影響[J];統(tǒng)計與決策;2012年07期
3 翟洪昌;瑞文高級推理測驗國家公務員測試結果的分析[J];心理科學;1999年02期
4 甘媛源;余嘉元;;改進3PL模型參數(shù)估計的MCMC算法[J];心理科學;2010年05期
5 陳德枝;戴海琦;丁樹良;;基于IRT模型的兒童圖形推理能力動態(tài)評估研究[J];心理科學;2011年01期
6 張敏強;簡小珠;陳秋梅;;規(guī)則空間模型在瑞文智力測驗中的認知診斷分析[J];心理科學;2011年02期
7 張厚粲,王曉平;瑞文標準推理測驗在我國的修訂[J];心理學報;1989年02期
8 羅照盛,漆書青,戴海琦,丁樹良;項目反應理論多級記分模型參數(shù)估計的實現(xiàn)[J];心理學報;2003年04期
9 肖瑋;苗丹民;朱寧寧;張青華;;應用項目反應理論創(chuàng)建圖形推理測驗題庫[J];心理學報;2006年06期
10 李中權;王力;張厚粲;周仁來;;不同認知成分在圖形推理測驗項目難度預測中的作用[J];心理學報;2011年09期
相關博士學位論文 前3條
1 劉聲濤;幾何類比推理測驗用于認知診斷的可行性研究[D];江西師范大學;2007年
2 周駿;矩陣完成問題的項目生成研究[D];江西師范大學;2008年
3 付志慧;多維項目反應模型的參數(shù)估計[D];吉林大學;2010年
本文編號:2426709
本文鏈接:http://sikaile.net/shekelunwen/xinlixingwei/2426709.html