屬性多級化的非參數(shù)認(rèn)知診斷方法及CD-CAT選題策略研究
[Abstract]:(Computerized Adaptive Test for Cognitive Diagnosis,CD-CAT (computerized Adaptive Test for Cognitive diagnosis) is based on the traditional CAT, and has the function of cognitive diagnostics. CD-CAT uses intelligent topic selection strategy. Can estimate the knowledge state of the subjects quickly and accurately. In the actual teaching and testing situations, the cognitive attributes of the project inspection often include multiple levels, and the multi-level cognitive diagnosis evaluation of the attributes emerges as the times require. It can not only specify the level of cognitive attributes measured by items, but also further investigate which level of cognitive attributes the subjects have grasped, so it can provide detailed diagnostic information. More practical application value and guiding significance. Most of the cognitive diagnosis models used in the current cognitive diagnosis evaluation are parametric diagnosis models. The selection of the models needs to meet certain preconditions, and the parameter estimation methods used are complex and flawed. The non-parametric cognitive diagnosis method only needs to define the Q matrix in advance to classify the patients according to the response of the subjects. It is simple, convenient and can meet the needs of the actual test situation. In this paper, based on the idea of clustering analysis, a cognitive diagnostic clustering diagnosis method (Cluster Diagnostic Method for Polytomous Attribute,PACDM) is proposed, which is based on the ideal reaction model and the actual response model of the subjects. Several commonly used CD-CAT selection strategies are introduced into the attribute multilevel CD-CAT, and the feasibility of using them in the computerized adaptive test of attribute multilevel cognitive diagnosis is investigated under the framework of the pG-DINA model. At the same time, its performance in diagnosis accuracy, topic exposure and test overlap rate were compared. The results show that: (1) under the same experimental conditions, the model accuracy rate and the attribute average marginal accuracy rate of the non-parametric method are higher than those of the parametric method. (2) when the project quality is low (larger s and g parameters), Non-parametric method has advantages over parametric method, and this advantage expands with the increase of error level. (3) in the aspect of pattern accuracy rate and attribute average marginal rate, PA-SHE and PA-MPWKL have the best performance. The performance of PA-PWKL and PA-HKL was the second, and that of PA-KL was the worst. (4) in terms of question bank security, PA-HKL and PA-PWKL were the best, and PA-KL was the second. PA-SHE and PA-MPWKL selected the worst performance of the strategy.
【學(xué)位授予單位】:江西師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:B842.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前9條
1 陳平;丁樹良;林海菁;周婕;;等級反應(yīng)模型下計算機化自適應(yīng)測驗選題策略[J];心理學(xué)報;2006年03期
2 辛濤;劉拓;;認(rèn)知診斷計算機自適應(yīng)測驗中選題策略的新進(jìn)展[J];南京師大學(xué)報(社會科學(xué)版);2013年06期
3 羅芬;丁樹良;王曉慶;;多級評分計算機化自適應(yīng)測驗動態(tài)綜合選題策略[J];心理學(xué)報;2012年03期
4 戴海琦;陳德枝;丁樹良;鄧太萍;;多級評分題計算機自適應(yīng)測驗選題策略比較[J];心理學(xué)報;2006年05期
5 涂冬波;蔡艷;戴海琦;;認(rèn)知診斷CAT選題策略及初始題選取方法[J];心理科學(xué);2013年02期
6 尚志勇;丁樹良;;認(rèn)知診斷自適應(yīng)測驗選題策略探新[J];江西師范大學(xué)學(xué)報(自然科學(xué)版);2011年04期
7 駱聰;王霞;鐘陽;張敏強;;CD-CAT選題策略及其應(yīng)用[J];心理研究;2014年02期
8 程小揚;丁樹良;;拓廣分部評分模型下計算機自適應(yīng)測驗變加權(quán)選題策略[J];心理科學(xué);2011年04期
9 艾國金;甘登文;丁樹良;;計算機化自適應(yīng)認(rèn)知診斷測驗按模式分層選題策略[J];江西師范大學(xué)學(xué)報(自然科學(xué)版);2014年03期
相關(guān)會議論文 前6條
1 謝典佑;吳任婕;郭伯臣;許天維;;以貝氏網(wǎng)絡(luò)與區(qū)塊平衡為基礎(chǔ)之適性選題策略[A];全國教育與心理統(tǒng)計與測量學(xué)術(shù)年會暨第八屆海峽兩岸心理與教育測驗學(xué)術(shù)研討會論文摘要集[C];2008年
2 陳平;丁樹良;林海菁;周婕;;等級反應(yīng)模型下計算機化自適應(yīng)測驗選題策略[A];全國教育與心理統(tǒng)計測量學(xué)術(shù)年會論文摘要集[C];2006年
3 駱聰;張敏強;;認(rèn)知診斷計算機自適應(yīng)測驗選題策略及其新進(jìn)展[A];心理學(xué)與創(chuàng)新能力提升——第十六屆全國心理學(xué)學(xué)術(shù)會議論文集[C];2013年
4 羅芬;丁樹良;王曉慶;;多級評分CAT改進(jìn)的最大信息量選題策略[A];增強心理學(xué)服務(wù)社會的意識和功能——中國心理學(xué)會成立90周年紀(jì)念大會暨第十四屆全國心理學(xué)學(xué)術(shù)會議論文摘要集[C];2011年
5 余丹;潘奕嬈;丁樹良;;計算機化自適應(yīng)診斷測驗新的選題策略[A];增強心理學(xué)服務(wù)社會的意識和功能——中國心理學(xué)會成立90周年紀(jì)念大會暨第十四屆全國心理學(xué)學(xué)術(shù)會議論文摘要集[C];2011年
6 衛(wèi)芳娜;甘登文;丁樹良;;計算機化自適應(yīng)診斷測驗按模式分層選題策略[A];增強心理學(xué)服務(wù)社會的意識和功能——中國心理學(xué)會成立90周年紀(jì)念大會暨第十四屆全國心理學(xué)學(xué)術(shù)會議論文摘要集[C];2011年
相關(guān)碩士學(xué)位論文 前10條
1 張曉;屬性多級化的非參數(shù)認(rèn)知診斷方法及CD-CAT選題策略研究[D];江西師范大學(xué);2017年
2 艾國金;CD-CAT按模式分層選題策略及變長終止規(guī)則研究[D];江西師范大學(xué);2015年
3 胡姍;基于GPCM和3PLM的CAT研究[D];江西師范大學(xué);2015年
4 徐莉;混合題型CAT選題策略的研究[D];江西師范大學(xué);2016年
5 丁加林;帶區(qū)分度約束的選題策略研究[D];江西師范大學(xué);2016年
6 吳敏;認(rèn)知診斷計算機化自適應(yīng)測驗選題策略的比較及其應(yīng)用研究[D];江西師范大學(xué);2016年
7 高洪娟;計算機自適應(yīng)測試中選題策略優(yōu)化研究[D];東北師范大學(xué);2016年
8 汪文義;計算機化自適應(yīng)測驗選題策略研究[D];江西師范大學(xué);2009年
9 李萍;自動控制區(qū)分度作用的選題策略研究[D];江西師范大學(xué);2013年
10 關(guān)潮輝;計算機化自適應(yīng)測驗的分層終止規(guī)則與選題策略的研究[D];江西師范大學(xué);2014年
,本文編號:2328846
本文鏈接:http://sikaile.net/shekelunwen/xinlixingwei/2328846.html