基于屬性界定的認(rèn)知診斷Q矩陣估計方法研究
發(fā)布時間:2018-05-12 01:02
本文選題:認(rèn)知診斷評估 + Q矩陣估計 ; 參考:《華中師范大學(xué)》2017年碩士論文
【摘要】:認(rèn)知診斷以微觀認(rèn)知視角對學(xué)生的學(xué)習(xí)過程做出科學(xué)的準(zhǔn)確評估,已經(jīng)在心理學(xué)和教育數(shù)據(jù)挖掘領(lǐng)域中發(fā)揮了巨大潛力。然而目前應(yīng)用認(rèn)知診斷理論編制的測驗有限,其主要困難是反映項目和屬性間關(guān)系的Q矩陣無法合理界定。構(gòu)建正確的Q矩陣是認(rèn)知診斷實踐中的關(guān)鍵環(huán)節(jié),是認(rèn)知診斷測驗理論不同于傳統(tǒng)測量理論的本質(zhì)所在。Q矩陣的界定一般是由領(lǐng)域?qū)<液托睦頊y量學(xué)家基于診斷目的,通過討論共同完成。但是這種方式存在著界定成本高、主觀性較強以及專家意見不一致等問題。因此,認(rèn)知診斷亟需研究更加客觀地估計Q矩陣的方法,近年來這方面成為國內(nèi)外學(xué)者關(guān)注的焦點,相繼研究出一系列的估計方法。本論文在研究了一些經(jīng)典Q矩陣估計方法的基礎(chǔ)上,主要針對經(jīng)典Barnes爬山法搜索能力差和易陷入局部極值的缺陷,提出利用全局優(yōu)化搜索的遺傳算法改進(jìn)經(jīng)典爬山法,實現(xiàn)Q矩陣的估計,并提出借助DeCarlo貝葉斯法估計精度較高的優(yōu)勢對估計結(jié)果進(jìn)一步優(yōu)化。論文在模擬數(shù)據(jù)和真實數(shù)據(jù)集合上分別進(jìn)行了實驗驗證,通過分析Q矩陣邊際判準(zhǔn)率MMR、差異距離DD和模型擬合指數(shù)等評價指標(biāo)來研究新方法與其他方法估計性能的差異。模擬數(shù)據(jù)采用Xiang(2013)的方法生成,使用Monte Carlo模擬系統(tǒng)研究了測驗學(xué)生人數(shù)、屬性數(shù)目和項目總數(shù)等因素對各方法估計性能的影響。真實數(shù)據(jù)來源于經(jīng)典的Tatsuoka分?jǐn)?shù)減法和SAT測驗,經(jīng)過實驗對比驗證了算法的實用性。大量實驗研究表明:在同等條件下,本文遺傳算法的估計性能優(yōu)于Barnes爬山法和非線性懲罰估計法,而貝葉斯法進(jìn)一步優(yōu)化后的Q矩陣更加接近于真實Q矩陣,明顯提升了估計精度。
[Abstract]:Cognitive diagnosis has played a great potential in the field of psychology and educational data mining to make a scientific and accurate assessment of students' learning process from the perspective of micro-cognition. However, there are limited tests compiled by cognitive diagnostic theory, the main difficulty of which is that the Q matrix, which reflects the relationship between items and attributes, cannot be reasonably defined. Constructing a correct Q matrix is a key link in the practice of cognitive diagnosis. It is the essence of cognitive diagnostic test theory that is different from traditional measurement theory. The definition of Q matrix is generally based on the diagnostic purpose by domain experts and psychometrists. To complete together through discussion. But there are some problems in this way, such as high definition cost, strong subjectivity and different opinions of experts. Therefore, cognitive diagnosis needs to study the methods of estimating Q matrix more objectively. In recent years, researchers at home and abroad have paid close attention to this aspect, and a series of estimation methods have been developed one after another. In this paper, based on the study of some classical Q matrix estimation methods, the classical Barnes mountain climbing algorithm is proposed to improve the classical mountain climbing method by using the genetic algorithm with global optimization, which is poor in searching ability and easy to fall into local extremum. The estimation of Q matrix is realized, and the DeCarlo Bayesian method is proposed to further optimize the estimation results. In this paper, experiments are carried out on the set of simulation data and real data, and the performance difference between the new method and other methods is studied by analyzing the evaluation indexes such as the marginal accuracy rate of Q matrix MMRs, difference distance DD and model fitting index. The Monte Carlo simulation system was used to study the effects of the number of students, the number of attributes and the total number of items on the estimation performance of each method. The real data come from the classical Tatsuoka score subtraction and SAT test. A large number of experiments show that under the same conditions, the estimation performance of genetic algorithm in this paper is better than that of Barnes mountain climbing method and nonlinear penalty estimation method, and the Q matrix after further optimization by Bayesian method is closer to the real Q matrix. The estimation accuracy is obviously improved.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:B842.1;TP311.13
【相似文獻(xiàn)】
相關(guān)碩士學(xué)位論文 前5條
1 岳曉芳;基于屬性界定的認(rèn)知診斷Q矩陣估計方法研究[D];華中師范大學(xué);2017年
2 周密;基于低秩矩陣恢復(fù)的算法及應(yīng)用研究[D];天津大學(xué);2016年
3 寧春貴;不確定型判斷矩陣的一致性研究[D];廣西大學(xué);2017年
4 李玉玲;廣義Wigner矩陣的經(jīng)驗譜分布的收斂速度[D];東北師范大學(xué);2017年
5 李西安;基于離散動力系統(tǒng)的復(fù)線性方程的兩種分裂迭代方法[D];蘭州大學(xué);2017年
,本文編號:1876406
本文鏈接:http://sikaile.net/shekelunwen/xinlixingwei/1876406.html
最近更新
教材專著