機(jī)器學(xué)習(xí)與沖突預(yù)測(cè)——國(guó)際關(guān)系研究的一個(gè)跨學(xué)科視角
發(fā)布時(shí)間:2018-04-14 09:24
本文選題:沖突預(yù)測(cè) + 機(jī)器學(xué)習(xí) ; 參考:《世界經(jīng)濟(jì)與政治》2017年07期
【摘要】:通過(guò)機(jī)器學(xué)習(xí)來(lái)預(yù)測(cè)沖突正在成為當(dāng)前國(guó)際關(guān)系研究領(lǐng)域的一個(gè)熱議話(huà)題。但是從跨學(xué)科交叉研究的視角來(lái)看,計(jì)算機(jī)介入政治分析和國(guó)際關(guān)系研究并不是一個(gè)新現(xiàn)象,其間經(jīng)歷了從計(jì)算機(jī)模擬沖突場(chǎng)景到機(jī)器學(xué)習(xí)自動(dòng)識(shí)別沖突模式的復(fù)雜變革歷程。二者的共同點(diǎn)是都重視仿真社會(huì)互動(dòng)情景與政治復(fù)雜演進(jìn)過(guò)程,反對(duì)有關(guān)政治沖突現(xiàn)象的簡(jiǎn)單線(xiàn)性解釋;但二者在研究取向上還是有著本質(zhì)的不同,計(jì)算機(jī)模擬提倡基于特定社會(huì)理論的情景建模與邏輯推演,而機(jī)器學(xué)習(xí)則強(qiáng)調(diào)無(wú)特定社會(huì)理論支撐的特征識(shí)別與關(guān)聯(lián)預(yù)測(cè)。有鑒于此,本文首先分析了計(jì)算機(jī)模擬與機(jī)器學(xué)習(xí)在沖突預(yù)測(cè)中的研究路徑差異,然后重點(diǎn)闡述了無(wú)理論支撐下將機(jī)器學(xué)習(xí)應(yīng)用于沖突預(yù)測(cè)之可能,并以2010—2016年印度恐怖襲擊預(yù)測(cè)為例,實(shí)證檢驗(yàn)了基于BP神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)在真實(shí)社會(huì)情景中的實(shí)際沖突預(yù)測(cè)效力,結(jié)果發(fā)現(xiàn)基于機(jī)器學(xué)習(xí)的沖突預(yù)測(cè)范式即使在沒(méi)有特定社會(huì)理論支撐下,也具備一定沖突預(yù)測(cè)能力,并可產(chǎn)生新的沖突知識(shí)發(fā)現(xiàn)。但即便如此,作為一種跨學(xué)科交叉研究范式,機(jī)器學(xué)習(xí)介入沖突預(yù)測(cè)仍然面臨重重困難。
[Abstract]:Prediction of conflict through machine learning is becoming a hot topic in the field of international relations.However, from the perspective of interdisciplinary research, computer involvement in political analysis and international relations research is not a new phenomenon, which has undergone a complex transformation from computer simulation conflict scene to machine learning automatic identification of conflict pattern.Their common point is that they attach importance to the simulation of social interaction scenarios and the complicated evolution process of politics, and oppose the simple linear explanation of the phenomenon of political conflict, but they still have essential differences in research orientation.Computer simulation advocates scenario modeling and logical deduction based on specific social theory, while machine learning emphasizes feature recognition and correlation prediction without the support of specific social theory.In view of this, this paper first analyzes the research path difference between computer simulation and machine learning in conflict prediction, and then focuses on the possibility of applying machine learning to conflict prediction without theoretical support.Taking the prediction of terrorist attacks in India 2010-2016 as an example, the paper empirically tests the effectiveness of machine learning based on BP neural network in actual conflict prediction in real social situations.The results show that the conflict prediction paradigm based on machine learning has a certain ability of conflict prediction even without the support of specific social theory and can produce new conflict knowledge discovery.But even so, as a cross-disciplinary research paradigm, machine learning involved in conflict prediction still faces a lot of difficulties.
【作者單位】: 對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué)國(guó)際關(guān)系學(xué)院;
【基金】:國(guó)家社科基金青年項(xiàng)目“基于大數(shù)據(jù)驅(qū)動(dòng)的外交決策模式創(chuàng)新與我國(guó)實(shí)踐路徑研究”(項(xiàng)目編號(hào):15CGJ034) 對(duì)外經(jīng)濟(jì)貿(mào)易大學(xué)中央高;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金資助(批準(zhǔn)號(hào):CXTD8-05)之階段性成果
【分類(lèi)號(hào)】:D80
,
本文編號(hào):1748718
本文鏈接:http://sikaile.net/shekelunwen/waijiao/1748718.html
最近更新
教材專(zhuān)著