圓柱體粒子的一維和三維振動(dòng)堆積致密化的實(shí)驗(yàn)研究
發(fā)布時(shí)間:2021-06-09 19:26
本論文對(duì)圓柱體顆粒在一維(1D)和三維(3D)振動(dòng)條件下的堆積致密化進(jìn)行了系統(tǒng)的物理實(shí)驗(yàn)研究。采取連續(xù)振動(dòng)、整體加料的方式,系統(tǒng)的研究了1D和3D振動(dòng)中各振動(dòng)參數(shù)(如:振動(dòng)時(shí)間t、振幅A、振動(dòng)頻率ω與振動(dòng)強(qiáng)度Γ=Aω2/g)、容器尺寸D以及圓柱體顆粒的長(zhǎng)徑比l/d和球形度φ對(duì)粒子堆積體系致密化的影響。利用實(shí)驗(yàn)所得結(jié)果,對(duì)所提出的預(yù)測(cè)圓柱體堆積密度的解析模型進(jìn)行驗(yàn)證。研究結(jié)果表明:無(wú)論是在1D振動(dòng)還是3D振動(dòng),圓柱體堆積密度都隨著振動(dòng)時(shí)間的增加而增加,最終趨于穩(wěn)定值。振幅和振動(dòng)頻率對(duì)圓柱體在1D和3D振動(dòng)條件下的堆積密度具有相似的影響,即在每種振動(dòng)條件下,圓柱體粒子的堆積密度都先隨著振動(dòng)頻率或振幅的增加而增大,達(dá)到最大值后,隨振動(dòng)頻率或振幅的進(jìn)一步增加而降低。振動(dòng)頻率和振幅的影響可以歸為振動(dòng)強(qiáng)度的作用,即振幅或振動(dòng)頻率的增加都可以使振動(dòng)強(qiáng)度增大,從而使堆積密度增加,達(dá)到最大值后,繼續(xù)增加振動(dòng)強(qiáng)度,堆積密度反而降低。但研究發(fā)現(xiàn),同一振動(dòng)強(qiáng)度Γ下,振幅么和振動(dòng)頻率ω可以不同,得到的堆積密度Ρ也不相同,而相同的堆積密度Ρ可以由不同的振動(dòng)強(qiáng)度獲得。因此,僅靠單一的振動(dòng)參數(shù)Γ不足以描述振動(dòng)條件下的...
【文章來(lái)源】:東北大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:73 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
第1章 緒論
1.1 顆粒物質(zhì)
1.1.1 顆粒堆積
1.1.2 國(guó)內(nèi)外顆粒堆積研究現(xiàn)狀
1.2 課題研究的內(nèi)容及目的
1.3 課題研究的意義及創(chuàng)新性
第2章 實(shí)驗(yàn)設(shè)備及方法
2.1 實(shí)驗(yàn)設(shè)備及材料
2.1.1 實(shí)驗(yàn)振動(dòng)設(shè)備
2.1.2 實(shí)驗(yàn)材料
2.2 實(shí)驗(yàn)內(nèi)容與方法
2.2.1 實(shí)驗(yàn)內(nèi)容
2.2.2 實(shí)驗(yàn)方法
第3章 圓柱體粒子在一維(1D)豎直振動(dòng)條件下的堆積致密化實(shí)驗(yàn)
3.1 振動(dòng)時(shí)間t的選取
3.2 振動(dòng)頻率ω的影響
3.3 振幅A的影響
3.4 振動(dòng)強(qiáng)度Γ的影響
3.5 A-ω的綜合影響
3.6 容器壁的影響
3.7 長(zhǎng)徑比及球形度的影響
3.8 對(duì)預(yù)測(cè)粒子堆積密度的解析模型的驗(yàn)證
3.9 小結(jié)
第4章 圓柱體粒子在三維(3D)振動(dòng)條件下的堆積致密化實(shí)驗(yàn)
4.1 振動(dòng)時(shí)間t的選取
4.2 振動(dòng)頻率ω的影響
4.3 振幅A的影響
4.4 振動(dòng)強(qiáng)度Γ的影響
4.5 A-ω的綜合影響
4.6 容器壁的影響
4.7 長(zhǎng)徑比及球形度的影響
4.8 對(duì)預(yù)測(cè)粒子堆積密度的解析模型的驗(yàn)證
4.9 小結(jié)
第5章 結(jié)論
參考文獻(xiàn)
致謝
【參考文獻(xiàn)】:
期刊論文
[1]Maximum packing densities of basic 3D objects[J]. LI ShuiXiang,ZHAO Jian,LU Peng & XIE Yu State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing 100871,China. Chinese Science Bulletin. 2010(02)
[2]非球體填充的組合球模型及松弛算法[J]. 李水鄉(xiāng),趙健. 計(jì)算物理. 2009(03)
[3]基本三維幾何體的最高填充率[J]. 李水鄉(xiāng),趙健,陸鵬,謝玉. 科學(xué)通報(bào). 2009(06)
[4]金屬注射成形過(guò)程中的粉末堆積問(wèn)題[J]. 劉紹軍,曲選輝,李益民,黃伯云. 材料科學(xué)與工程. 1998(04)
本文編號(hào):3221174
【文章來(lái)源】:東北大學(xué)遼寧省 211工程院校 985工程院校 教育部直屬院校
【文章頁(yè)數(shù)】:73 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
第1章 緒論
1.1 顆粒物質(zhì)
1.1.1 顆粒堆積
1.1.2 國(guó)內(nèi)外顆粒堆積研究現(xiàn)狀
1.2 課題研究的內(nèi)容及目的
1.3 課題研究的意義及創(chuàng)新性
第2章 實(shí)驗(yàn)設(shè)備及方法
2.1 實(shí)驗(yàn)設(shè)備及材料
2.1.1 實(shí)驗(yàn)振動(dòng)設(shè)備
2.1.2 實(shí)驗(yàn)材料
2.2 實(shí)驗(yàn)內(nèi)容與方法
2.2.1 實(shí)驗(yàn)內(nèi)容
2.2.2 實(shí)驗(yàn)方法
第3章 圓柱體粒子在一維(1D)豎直振動(dòng)條件下的堆積致密化實(shí)驗(yàn)
3.1 振動(dòng)時(shí)間t的選取
3.2 振動(dòng)頻率ω的影響
3.3 振幅A的影響
3.4 振動(dòng)強(qiáng)度Γ的影響
3.5 A-ω的綜合影響
3.6 容器壁的影響
3.7 長(zhǎng)徑比及球形度的影響
3.8 對(duì)預(yù)測(cè)粒子堆積密度的解析模型的驗(yàn)證
3.9 小結(jié)
第4章 圓柱體粒子在三維(3D)振動(dòng)條件下的堆積致密化實(shí)驗(yàn)
4.1 振動(dòng)時(shí)間t的選取
4.2 振動(dòng)頻率ω的影響
4.3 振幅A的影響
4.4 振動(dòng)強(qiáng)度Γ的影響
4.5 A-ω的綜合影響
4.6 容器壁的影響
4.7 長(zhǎng)徑比及球形度的影響
4.8 對(duì)預(yù)測(cè)粒子堆積密度的解析模型的驗(yàn)證
4.9 小結(jié)
第5章 結(jié)論
參考文獻(xiàn)
致謝
【參考文獻(xiàn)】:
期刊論文
[1]Maximum packing densities of basic 3D objects[J]. LI ShuiXiang,ZHAO Jian,LU Peng & XIE Yu State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing 100871,China. Chinese Science Bulletin. 2010(02)
[2]非球體填充的組合球模型及松弛算法[J]. 李水鄉(xiāng),趙健. 計(jì)算物理. 2009(03)
[3]基本三維幾何體的最高填充率[J]. 李水鄉(xiāng),趙健,陸鵬,謝玉. 科學(xué)通報(bào). 2009(06)
[4]金屬注射成形過(guò)程中的粉末堆積問(wèn)題[J]. 劉紹軍,曲選輝,李益民,黃伯云. 材料科學(xué)與工程. 1998(04)
本文編號(hào):3221174
本文鏈接:http://sikaile.net/projectlw/yjlw/3221174.html
最近更新
教材專(zhuān)著