天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

除草劑和鹽脅迫對(duì)水稻和稗草生理生化和分子水平的比較分析研究

發(fā)布時(shí)間:2023-08-26 03:16
  植物經(jīng)常遭受多種生物或非生物逆境脅迫,如干旱、鹽害、冷害、病蟲害、除草劑、重金屬和有毒的化學(xué)物質(zhì)等。復(fù)合脅迫如鹽害和除草劑已經(jīng)被證實(shí)會(huì)誘導(dǎo)植物的各種應(yīng)激反應(yīng),并通過(guò)不同的信號(hào)傳導(dǎo)途徑來(lái)互相影響?寡趸烙到y(tǒng)、滲透調(diào)節(jié)物質(zhì)、光合作用、激素互作和轉(zhuǎn)錄因子都是涉及植物逆境響應(yīng)機(jī)制的主要代謝和傳導(dǎo)途徑。丁草胺是稻田中廣泛應(yīng)用的除草劑,而2,4-D也是在作物種植中常用的除草劑之一。在本文研究中,我們研究了在廣泛應(yīng)用的除草劑下水稻和稗草的反應(yīng),以及常用除草劑的應(yīng)用與非生物脅迫(例如鹽害)的交互作用。取得的主要研究結(jié)果如下:(1)丁草胺是在稻田中廣泛使用的除草劑。然而,丁草胺容易對(duì)水稻產(chǎn)生藥害。本章研究了不同濃度的丁草胺對(duì)浙粳88和秀水134的影響,發(fā)現(xiàn)高濃度的丁草胺處理顯著抑制水稻生長(zhǎng)、降低光合色素和葉綠素?zé)晒夂、破壞葉綠體結(jié)構(gòu)。對(duì)比秀水134,浙粳88積累了更多的丁草胺、ROS和更高的電解質(zhì)滲透率,但同時(shí)也含有更高活性的脯氨酸、吡咯啉合成酶、氨基丁酸轉(zhuǎn)氨酶來(lái)抵御丁草胺的毒害。比較來(lái)看,秀水134誘導(dǎo)抗氧化酶、GSH、可溶性糖、酚類物質(zhì)來(lái)保護(hù)水稻。因此,兩個(gè)品種對(duì)丁草胺的耐性可能和抗氧化酶的活...

【文章頁(yè)數(shù)】:223 頁(yè)

【學(xué)位級(jí)別】:博士

【文章目錄】:
Acknowledgement
Abbreviations
Abstract
摘要
Chapter 1 General Introduction
    1.1. Significance value of Oryza sativa L
    1.2 Environmental stresses under field conditions
    1.3 Objectives of the study
    1.4 Overview of the whole study
Chapter 2 Review of literature
    2.1 Consumption of herbicides in agriculture
    2.2 Herbicide in the environment
    2.3 Accumulation and distribution of herbicides after application
    2.4 Adverse effects of herbicides on plants
    2.5 Toxic effects of 2,4-D on crop plants
    2.6 Toxic effects of 2,4-D on non-plant species
    2.7 Toxic effects of 2,4-D on Aquatic plants
    2.8 Advance formulations of 2,4-D and herbicide resistant crops
    2.9 Plant stress responses and salinity
Chapter 3 Butachlor-induced ROS production and stress responsive gene regulations in rice
    3.1. Introduction
    3.2 Materials and methods
        3.2.1 Plant material
        3.2.2 Morphological parameters
        3.2.3 Chlorophyll pigments and fluorescence
        3.2.4 Determination of malondialdehyde and ROS contents
        3.2.5 Histochemical staining and EL estimation
        3.2.6 Butachlor quantification in rice tissues
        3.2.7 Biochemical analysis
        3.2.8 Determination of non-enzymatic antioxidants
        3.2.9 Ultrastructural observations
        3.2.10 Total RNA extraction, cDNA synthesis, and qRT-PCR assay
        3.2.11 Statistical analyses
    3.3 Results
        3.3.1 Plant morphology
        3.3.2 Herbicide accumulation
        3.3.3 Chloroplast ultrastructure
        3.3.4 Pigments concentration and chlorophyll fluorescence
        3.3.5 Butachlor induces oxidative stress in rice plants
        3.3.6 Analysis of antioxidant enzymes
        3.3.7 Analysis of non-enzymatic antioxidants
        3.3.8 Total soluble protein, sugar and proline contents
    3.4 Discussion
    3.5 Conclusions
Chapter 4 2,4-D and salinity differentially modulates stress responses in rice
    4.0 Introduction
    4.1 Materials and methods
        4.1.1 Plant material
    4.2 Materials and methods
        4.2.1 Plant material
        4.2.2 Morphological parameters
        4.2.4 Determination of malondialdehyde and ROS
        4.2.5 Electrolyte leakage estimation
        4.2.6 Biochemical analysis
        4.2.7 Determination of non-enzymatic antioxidants
        4.2.8 Indole acetic acid (IAA) and abscisic acid (ABA) measurements
        4.2.9 Ultrastructural observations
        4.2.10 Total RNA extraction, cDNA synthesis, and qPCR assay
        4.2.11 Statistical analysis
    4.3. Results
        4.3.1 Morphological parameters
        4.3.2 Chlorophyll and fluorescence parameters
        4.3.3 Oxidative stress production
        4.3.4 Response of enzymatic and non- enzymatic antioxidants
        4.3.5 Total soluble, proline and sugar contents
        4.3.6 Elements uptake
        4.3.7 Expression of Na+ and K+ transporter gene in rice cultivars
        4.3.8 Crosstalk of IAA and ABA
        4.3.9 Changes in the structure of the chloroplast and mitochondria
    4.4. Discussion
    4.5 Conclusion
Chapter 5 2,4-D attenuates salinity-induced toxicity in roots of rice cultivars
    5.1 Introduction
    5.2 Materials and methods
        5.2.1 Plant material and experimental design
        5.2.2 Morphological parameters
        5.2.3 Determination of malondialdehyde and ROS
        5.2.4 Histochemical staining and electrolyte leakage estimation
        5.2.5 Biochemical analysis
        5.2.6 Determination of non-enzymatic antioxidants
        5.2.7 Visualization of callose and lignin
        5.2.8 Determination of Na+9 K+ and lignin
        5.2.9 RNA isolation, cDNA synthesis and qRT-PCR assay
        5.2.10 Ultrastructural observations
        5.2.11 Statistical analysis
    5.3 Results
        5.3.1 Effects of 2,4-D/salt on biomass production,K+ and Na+ accumulation
        5.3.2 Effects of 2,4-D/salt on oxidative stress
        5.3.3 Response of enzymatic antioxidants
        5.3.4 Effects of 2,4-D/salt on glutathione-ascorbate cycle
        5.3.5 Effects of 2,4-D/salt on gene expression
        5.3.6 Gene expression of Na+ and K+ transporters genes
        5.3.8 Root ultra-structure under individual and combined stress treatments
    5.4 Discussion
        5.4.1 Possible mechanisms of salt tolerance
    5.5 Conclusion
Chapter 6 Salinity reduces 2,4-D efficacy in Echinochloa crusgalli
    6.0 Introduction
    6.1 Materials and methods
        6.1.1 Plant material and experimental design
        6.1.2 Morphological parameters
        6.1.3 Measurements of PSII maximum quantum yield
        6.1.4 Determination of malondialdehyde and RO
        6.1.5 Histochemical staining and Electrolyte leakage estimation
        6.1.6 Biochemical analysis
        6.1.7 Determination of non-enzymatic antioxidants
        6.1.8 Determination of Na+ and K+
  •         6.1.9 Indole acetic acid (IAA), abscisic acid (ABA) measurement
            6.1.10 Measurement of leaf relative water content
            6.1.11 Ultrastructural observations
            6.1.12 Statistical analysis
        6.2 Results
            6.2.1 Morphological parameters
            6.2.2 Chlorophyll and Chlorophyll fluorescence parameters
            6.2.3 Oxidative stress biomarkers
            6.2.4 Antioxidant enzymes activities
            6.2.5 Non-enzymatic antioxidant enzymes
            6.2.6 Mineral contents (K+, Na+ and K+/Na+)
            6.2.7 IAA and ABA interaction
            6.2.8 Changes in the ultrastructure of the chloroplast and mitochondria
            6.2.9 Principal component analysis
        6.3 Discussion
        6.4 Conclusion
    Chapter 7 Transcriptomic analysis of rice cultivars under 2,4-D and saline stress conditions
        7.1 Introduction
        7.2 Materials and methods
            7.2.1 Plant material and experimental design
            7.2.2 RNA-Seq
            7.2.3 Analysis of illumina sequencing results
        7.3 Results
            7.3.1 Sequencing output and assembly
            7.3.2 Gene annotation and functional classification
            7.3.3 Subcellular localization of DEGs in rice cultivars
            7.3.4 The herbicide 2,4-D responsive P450 and Glutathione DEGs
            7.3.5 Expression of DEGs involved in indole acetic acid synthesis and signaltransduction
            7.3.6 Expression of DEGs involved in ethylene synthesis
            7.3.7 Expression of DEGs involved in ABA synthesis and degradation
            7.3.8 Expression of key salt-responsive DEGs in rice cultivars
            7.3.9 Expression of DEGs involved in ABA synthesis genes
        7.4 Discussion
        7.5 Conclusion
    Chapter 8
        8.1 Major findings
        8.2 Future perspectives
    References
    List of publications



    本文編號(hào):3843843

  • 資料下載
    論文發(fā)表

    本文鏈接:http://sikaile.net/nykjlw/dzwbhlw/3843843.html


    Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

    版權(quán)申明:資料由用戶a44a4***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com