近紅外光學(xué)導(dǎo)航系統(tǒng)模擬實(shí)時(shí)CT導(dǎo)航對(duì)肝內(nèi)小病灶穿刺的研究
發(fā)布時(shí)間:2018-01-25 15:28
本文關(guān)鍵詞: 近紅外 光學(xué)導(dǎo)航 計(jì)算機(jī)斷層掃描成像 精度 穿刺 出處:《南方醫(yī)科大學(xué)》2017年博士論文 論文類型:學(xué)位論文
【摘要】:研究目的:1.對(duì)比迭代模型重建(iterative model reconstruction,IMR)技術(shù)與濾波反投影(filteredbackprojection,FBP)技術(shù)在薄層(1mm)CT平掃圖像上對(duì)肝內(nèi)小轉(zhuǎn)移瘤(直徑≤1Omm)的檢出效能差異,探索IMR技術(shù)是否具有為肝臟小病灶穿刺提供更好的穿刺背景圖像的潛力。2.評(píng)估一種新型近紅外光學(xué)導(dǎo)航系統(tǒng)與CT圖像融合在理想化穿刺模型條件下對(duì)靜態(tài)模型內(nèi)小靶點(diǎn)引導(dǎo)穿刺的準(zhǔn)確性及可行性,并在試驗(yàn)進(jìn)程中對(duì)出現(xiàn)的或可能出現(xiàn)的關(guān)鍵性問題找到相應(yīng)的解決策略。3.探討近紅外導(dǎo)航技術(shù)與CT圖像融合對(duì)模擬屏氣狀態(tài)及自由呼吸狀態(tài)下離體豬肝模型內(nèi)小靶點(diǎn)穿刺的準(zhǔn)確性及可行性,解決靜態(tài)及動(dòng)態(tài)條件下穿刺過程中如何進(jìn)行準(zhǔn)確定位并引導(dǎo)穿刺等關(guān)鍵性問題。4.探討近紅外導(dǎo)航技術(shù)與CT圖像融合對(duì)模擬屏氣狀態(tài)及自由呼吸狀態(tài)下活體小型豬肝臟內(nèi)小靶點(diǎn)穿刺的準(zhǔn)確性及可行性,發(fā)現(xiàn)并嘗試解決活體動(dòng)物穿刺過程中可能出現(xiàn)的相關(guān)問題。第一部分迭代模型重建(IMR)與濾波反投影(FBP)技術(shù)在薄層CT平掃圖像上對(duì)肝臟小轉(zhuǎn)移瘤成像對(duì)比研究1方法常規(guī)CT掃描89例肝轉(zhuǎn)移瘤患者,重建為層厚1mm的FBP及IMR圖像。病灶總數(shù)(total number,TN):增強(qiáng)IMR圖像上肝內(nèi)小病灶(≤10mm)的檢出量;病灶檢出數(shù)(detected number,DN):1mm薄層CT平掃圖像上小病灶檢出量;檢出率(detected rate,DR)= DN/TN;以5分法評(píng)估圖像質(zhì)量;計(jì)算門靜脈及下腔靜脈對(duì)比噪聲比(contrast-to-noise ratio,CNR)。2結(jié)果TN 值為 239 個(gè),IMR 組、FBP 組 DR 值分別為 43.93%(105/239)、17.57%(42/239)(p0.05);主觀評(píng)分分別為 4.17±0.51、3.28±0.54(p0.05)。IMR組門靜脈及下腔靜脈CNR值均高于FBP組(p均0.05)。3結(jié)論IMR技術(shù)較FBP技術(shù)明顯提高薄層CT平掃圖像上肝內(nèi)小轉(zhuǎn)移瘤檢出率及主要血管分支顯示質(zhì)量,研究結(jié)果證實(shí)IMR技術(shù)較FBP技術(shù)能為部分肝內(nèi)小病灶穿刺提供更好的薄層CT平掃圖像作為背景參考圖像。第二部分近紅外光學(xué)導(dǎo)航系統(tǒng)對(duì)瓊脂模型內(nèi)小靶點(diǎn)穿刺精度及可行性評(píng)估1方法1.1分組常規(guī)組與導(dǎo)航組,60靶點(diǎn)/組。1.2設(shè)備256層螺旋CT,管電壓/管電流:120kv/300mAs;矩陣:512×512;掃描野:350mm×350mm;層厚/層距:1mm/0.5mm。近紅外光學(xué)導(dǎo)航系統(tǒng)由合作單位提供。1.3穿刺方法常規(guī)組(1)CT掃描模型,確定靶點(diǎn)位置。(2)定位標(biāo)記貼于模型表面,再次CT掃描,據(jù)定位工具進(jìn)針。(3)CT掃描評(píng)估結(jié)果。導(dǎo)航組(1)CT掃描附帶表面標(biāo)記點(diǎn)的模型;(2)匹配標(biāo)記點(diǎn)圖像位置及空間位置;(3)注冊(cè)融合活檢針/模型的位置信息;(4)在導(dǎo)航系統(tǒng)圖像上進(jìn)針接觸靶點(diǎn)。(5)CT掃描評(píng)估結(jié)果。1.4數(shù)據(jù)靶點(diǎn)定位誤差(TPE):針尖與靶點(diǎn)距離,≤10mm穿刺成功;側(cè)向誤差(LE):穿刺針延長線與靶點(diǎn)最短距離;角度誤差(AE):穿刺針實(shí)際路徑與計(jì)劃路徑的夾角;深度誤差(DE):實(shí)際路徑與計(jì)劃路徑的深度差異絕對(duì)值。首次成功率(FSR):首次TPE值≤10mm的靶點(diǎn)數(shù)與總靶點(diǎn)的比值。1.5統(tǒng)計(jì)組間FSR值差異用卡方檢驗(yàn)評(píng)估,余用t檢驗(yàn)評(píng)估,p0.05認(rèn)為差異有統(tǒng)計(jì)學(xué)意義。2結(jié)果常規(guī)/導(dǎo)航組TPE值分別為12.19±4.19mm、3.18±1.70mm,LE值分別為6.80±2.86mm、2.28±1.49mm,AE值分別為 4.91±1.50°、2.96±1.29°,DE 值分別為 2.66±1.07mm、1.37±0.99mm(p 均0.05)。常規(guī)/導(dǎo)航組 FSR 分別為 35%、100%(p0.05)。3結(jié)論在理想化模型條件下,該近紅外光學(xué)導(dǎo)航系統(tǒng)的穿刺精度及臨床可行性參數(shù)均優(yōu)于常規(guī)組,研究結(jié)果證明該光學(xué)導(dǎo)航的穿刺精度及臨床可行性參數(shù)在靜態(tài)剛性模型/器官的臨床穿刺應(yīng)用方面具有較大潛力,但對(duì)于靜態(tài)或動(dòng)態(tài)非剛性模型/器官的穿刺應(yīng)用仍然需要進(jìn)一步研究。第三部分近紅外光學(xué)導(dǎo)航系統(tǒng)對(duì)屏氣及呼吸模型內(nèi)靶點(diǎn)穿刺的關(guān)鍵問題研究1材料與方法1.1分組屏氣模型:常規(guī)/導(dǎo)航組,45靶點(diǎn)/組。呼吸模型:常規(guī)/導(dǎo)航組,45靶點(diǎn)/組。1.2設(shè)備硬件同第二部分。用標(biāo)記點(diǎn)注冊(cè)誤差(fiducial registration error,FRE)曲線監(jiān)控標(biāo)記點(diǎn)實(shí)時(shí)位置誤差,曲線波谷區(qū)術(shù)前與術(shù)中標(biāo)記點(diǎn)差異最小。2結(jié)果屏氣模型:常規(guī)組/導(dǎo)航組TPE值分別為10.69±3.38mm、5.61±3.23mm(p0.05),LE分別為8.31±3.66 mm、3.60±2.22 mm(p0.05),AE分別為6.16±2.84°、3.57±2.38°(p0.05),DE 分別為 3.3±1.28mm、4.13±1.94mm(p0.05),FSR 分別為 33%(15/45)、87%(39/45)(p0.05)。呼吸模型:常規(guī)組/導(dǎo)航組TPE值分別為13.47±3.50mm、9.17±3.77mm(p0.05);LE 分別為 11.56±3.45mm、8.13±3.52mm(p0.05);AE 分別為 7.87±4.05、6.38±3.61(p0.05);DE 分別為 4.26±2.20mm、3.75±1.61mm(p0.05)。FSR 分別約 11%(5/45)、62%(39/45)(p0.05)。3 結(jié)論導(dǎo)航組對(duì)運(yùn)動(dòng)與靜止肝臟模型的穿刺TPE、LE、FSR值均優(yōu)于常規(guī)組,證明該光學(xué)導(dǎo)航系統(tǒng)同時(shí)具有提升靜止及運(yùn)動(dòng)的非剛性模型/器官內(nèi)靶點(diǎn)穿刺精度的價(jià)值。第四部分近紅外光學(xué)導(dǎo)航系統(tǒng)對(duì)屏氣及呼吸動(dòng)物肝內(nèi)靶點(diǎn)的穿刺應(yīng)用研究1 材料與方法1.1 分組屏氣動(dòng)物:常規(guī)組與導(dǎo)航組,,45靶點(diǎn)/組。呼吸動(dòng)物:常規(guī)組與導(dǎo)航組,45靶點(diǎn)/組。1.2 設(shè)備1.3 掃描及穿刺方法 同第三部分。1.4 數(shù)據(jù)收集1.5 統(tǒng)計(jì)2 結(jié)果屏氣動(dòng)物:常規(guī)/導(dǎo)航組TPE值分別為:13.86±3.45mm、5.22±3.02mm(p0.05);LE 分別為 9.39±3.20mm、4.01±2.43mm(p0.05);DE 分別為1.85±1.09mm、3.90±2.53mm(p0.05);AE 分別為 5.33±2.48°、4.37±2.82°(p0.05);FSR 分別為 16%(7/45)、91%(41/45)(p0.05)。呼吸動(dòng)物:常規(guī)/導(dǎo)航組TPE值分別為16.35±3.07mm、7.42±3.56mm(p0.05),LE 分別為 10.49±4.62mm、5.56±3.36mm(p0.05),AE 分別為 7.25±4.29°、5.15±3.33°(p0.05),DE 值分別約2.89±1.56mm、3.90±3.28mm(p0.05),FSR值分別為 9%(4/45)、73%(33/45)(p0.05)。3結(jié)論導(dǎo)航組在運(yùn)動(dòng)與靜止動(dòng)物的穿刺TPE、LE、FSR值均優(yōu)于常規(guī)組,證明該導(dǎo)航系統(tǒng)能夠提升活體屏氣或呼吸動(dòng)物肝內(nèi)小靶點(diǎn)的穿刺精度,但對(duì)于呼吸動(dòng)物穿刺操作仍較困難。
[Abstract]:Objective: 1. contrast iterated model reconstruction (iterative model reconstruction, IMR) and filtered backprojection (filteredbackprojection, FBP) technology in thin (1mm) CT scan images of small hepatic metastases (less than 1Omm) detection performance differences, explore whether IMR technology has provided the background image better puncture the potential.2. evaluated a novel near infrared optical navigation system and CT image fusion model in the ideal condition of puncture under the accuracy and feasibility of small target guided static model of small lesions of liver biopsy, and in the process of key problems or possible to find the corresponding solution strategy of nearly.3. infrared navigation technology and CT image fusion for simulation and breath holding state free breathing from the accuracy and feasibility of the model of small target body liver puncture, solve the static and dynamic. How to accurately locate the key problems and guided.4. to investigate the accuracy and feasibility of fusion simulation and breath holding state free breathing in pig liver small target puncture near infrared navigation technology and CT image under the puncture process, and attempt to resolve related problems that may arise in the process of living animal puncture the first part. Iterative model reconstruction (IMR) and filter back projection (FBP) technique research on CT images of small liver metastases compared to 1 conventional methods of CT scan imaging of 89 cases of liver metastases in patients with thin CT flat, FBP and IMR image reconstruction thickness 1mm. The total number of lesions (total number, TN). IMR image enhancement on intrahepatic small lesion (10mm) detection; number of lesions (detected number, DN): 1mm CT scan images of small lesions detected; the detection rate (detected = DN/TN; rate, DR) with 5 points method to evaluate image quality The amount of calculation of the portal vein and inferior vena cava; contrast to noise ratio (contrast-to-noise ratio, CNR.2) the TN value was 239, IMR group, FBP group, DR = 43.93% (105/239), 17.57% (42/239) (P0.05); subjective scores were 4.17 + 0.51,3.28 + 0.54 (P0.05).IMR group and portal vein inferior vena cava CNR values were higher than that of group FBP (P 0.05) conclusion.3 technology IMR is FBP technology significantly improved the CT scan images of small hepatic metastasis detection rate and main branch vessels display quality, the results proved that IMR technology is FBP technology for small lesions in the liver puncture part provide thin flat CT better the scan image as the reference image. The second part of the near infrared optical navigation system evaluation method and the conventional group 1.1 group 1 group on the agar model small navigation target puncture accuracy and feasibility of 60 target group /.1.2 equipment of 256 slice spiral CT, tube voltage / current tube: 120kv/300mAs; 鐭╅樀:512脳512;鎵弿閲
本文編號(hào):1463126
本文鏈接:http://sikaile.net/linchuangyixuelunwen/1463126.html
最近更新
教材專著