基于MEMS的小型化圓時(shí)柵傳感器研究
[Abstract]:With the development of microelectronics industry, the sensor is gradually developing towards miniaturization and high precision. Based on this, this paper focuses on the study of a new type of miniaturized electric field-type circular time-gate sensor. The electric field circular time gate sensor uses the orthogonal electric field to construct the moving reference frame and directly uses the electric field coupling way to induce the electric signal. Compared with the traditional time gate, the electric field circular time gate sensor reduces the intermediate link of the induction signal and has stronger anti-jamming ability. The MEMS micro / nano machining technology is used to process the electrode plate, which ensures the precision of the sensor. Electric field circular time gate is a new type capacitive displacement sensor with simple structure, low power consumption, simple signal acquisition and processing process, which is conducive to the miniaturization and high integration of the sensor. In addition to the miniaturization of the sensor, it is necessary to improve the measurement accuracy of the sensor. Therefore, the combination of theoretical analysis, model simulation and experimental verification should be adopted. Gradually form a set of guiding electric field type circular time gate sensor theory. In this paper, the structure of grid displacement sensor based on electric field circle is optimized. The main work is as follows: 1. The space-time coordinate transformation theory, mechanical time-gate principle and magnetic field-type time-gate principle are described. The double-row structure and single-row structure of electric field-type circular time-gate sensor are deeply studied, and their working principles are described in detail. 2. Based on the COMSOL Multiphysics multi-physical field simulation software, the double-row structure of the sensor is simulated firstly, and the reason of the difference between the inner and outer two cycles of the double-row structure is clarified, and the secondary error is analyzed in combination with the theory. In order to eliminate this difference, the structure of the sensor is optimized into a single-row structure, and the single-row structure is simulated and analyzed, and the structure size and the number of antipods of the miniaturized sensor are determined. Fabrication of optimized sensors by MEMS micro / nano process. 3. According to the experimental requirements, the experimental platform is set up, and a lot of experiments are carried out by combining theoretical analysis and simulation results. Firstly, the optimization of the sensor from double-row structure to single-row structure is verified by experiments. Then, according to the experimental error data and theoretical analysis in the single-row structure, the error source is found, and the structure optimization is carried out. The secondary error will be brought about by the two standing wave amplitude difference, installation tilt, pole manufacturing error and so on. When the amplitude of the excitation signal is different, the two standing wave phases are not strictly orthogonal to produce one or two errors, and the third and fifth harmonics of the sensor will bring about four times errors. Through a lot of experimental verification and error analysis, the structure of the sensor is continuously optimized. The experimental results show that the final experimental accuracy of the circular time gate sensor with diameter of 57mm is 鹵10 "and the resolution is 0.2".
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳自然;劉小康;楊繼森;李鋼;;基于測(cè)量基準(zhǔn)變換的增量直線式時(shí)柵傳感器研究[J];儀器儀表學(xué)報(bào);2017年01期
2 但敏;鄭方燕;王合文;張瀚瀟;吳玉梅;樊星辰;;TDC-GP21電場(chǎng)式圓時(shí)柵傳感器信號(hào)處理系統(tǒng)設(shè)計(jì)[J];傳感器與微系統(tǒng);2016年12期
3 肖應(yīng)超;;MEMS傳感器發(fā)展現(xiàn)狀與應(yīng)用[J];中國(guó)高新技術(shù)企業(yè);2016年35期
4 侯為萍;孫敏;;小型化MEMS陀螺儀標(biāo)定平臺(tái)的設(shè)計(jì)[J];電子工業(yè)專(zhuān)用設(shè)備;2015年02期
5 尹杭;張偉;袁琳峰;;一種MEMS加速度計(jì)誤差分析與校準(zhǔn)方法[J];傳感技術(shù)學(xué)報(bào);2014年07期
6 劉小康;彭凱;王先全;朱革;;納米時(shí)柵位移傳感器的理論模型與誤差分析[J];儀器儀表學(xué)報(bào);2014年05期
7 徐軼;徐青;;基于COMSOL Multiphysics的滲流有限元分析[J];武漢大學(xué)學(xué)報(bào)(工學(xué)版);2014年02期
8 徐開(kāi)先;徐秋玲;劉沁;;傳感器產(chǎn)業(yè)現(xiàn)狀和產(chǎn)業(yè)結(jié)構(gòu)思考[J];儀表技術(shù)與傳感器;2013年09期
9 馬奎;李大宗;;MEMS壓力傳感器介紹[J];河北農(nóng)機(jī);2013年02期
10 Li-bo ZHAO;Long-qi XU;Gui-ming ZHANG;Yu-long ZHAO;Xiao-po WANG;Zhi-gang LIU;Zhuang-de JIANG;;A trapezoidal cantilever density sensor based on MEMS technology[J];Journal of Zhejiang University-Science C(Computers & Electronics);2013年04期
相關(guān)重要報(bào)紙文章 前1條
1 宋清輝;;《中國(guó)制造2025》比德國(guó)工業(yè)4.0任務(wù)更復(fù)雜[N];中國(guó)電子報(bào);2015年
相關(guān)博士學(xué)位論文 前2條
1 劉玉飛;直角坐標(biāo)柔性機(jī)器人操作臂機(jī)電耦合動(dòng)力學(xué)及振動(dòng)特性研究[D];中國(guó)礦業(yè)大學(xué);2016年
2 陳錫侯;新型時(shí)柵位移傳感器研究[D];重慶大學(xué);2007年
相關(guān)碩士學(xué)位論文 前5條
1 于治成;基于交變電場(chǎng)的精密角位移測(cè)量方法與實(shí)驗(yàn)研究[D];重慶理工大學(xué);2015年
2 龐廣陸;鐘罩型絕緣子積污仿真模擬研究[D];華北電力大學(xué);2015年
3 蒲紅吉;納米時(shí)柵傳感器電場(chǎng)仿真與實(shí)驗(yàn)研究[D];重慶理工大學(xué);2014年
4 王寶珠;基于SOPC的時(shí)柵信號(hào)處理系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];重慶理工大學(xué);2013年
5 彭凱;精密電場(chǎng)式時(shí)柵傳感器參數(shù)設(shè)計(jì)與優(yōu)化[D];重慶理工大學(xué);2013年
,本文編號(hào):2447281
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2447281.html