基于多目標(biāo)優(yōu)化的云任務(wù)調(diào)度算法研究
[Abstract]:Cloud computing, as the most widely used commercial distributed computing technology, has a large scale of servers and users, so the system needs to schedule and manage various tasks in the cloud environment frequently. The scheduling of execution time and execution cost in cloud environment is a multi-objective combinatorial optimization problem of NP-hard. However, the current cloud task scheduling generally adopts a heuristic method of single objective optimization with constrained execution cost or execution time. The multiuser execution time and execution cost of complex cloud systems with load balancing can not be fully satisfied. Therefore, on the basis of multi-objective optimization, it is of great significance to study the task scheduling algorithm in cloud environment. By analyzing the characteristics of cloud tasks, this paper improves the cloud task model, and selects execution time, execution cost and load balance as the optimization objectives, and optimizes the scheduling process of cloud tasks, based on this multi-objective optimization. A cloud task scheduling model is established in the cloud environment. The main research work is as follows: 1) aiming at the diversity of task requirements in the cloud environment, the concept, architecture and technical characteristics of cloud computing are analyzed, and the cloud task model is improved. This paper introduces the concept of multi-objective optimization. 2) aiming at the scheduling requirements of mixed cloud tasks, the paper selects the three objectives of cloud users' concern about the execution time and cost, and the load balancing that cloud service providers are concerned about. As the optimization objective of task scheduling in cloud environment, a multi-objective optimization model is established to deal with this mixed cloud task. 3) considering the dynamic change of cloud environment and the characteristics of cloud task scheduling, Ant colony genetic algorithm (AGA) is improved, and a multi-objective cloud task scheduling algorithm based on adaptive genetic ant colony algorithm (AGA) is proposed. The high precision of ant colony algorithm is integrated to avoid the deficiency of local solving ability of genetic algorithm and the lack of initial pheromone of ant colony optimization algorithm, which is proved by Cloud Sim simulation platform. The algorithm has obvious advantages in the two target problems of execution time and execution cost that cloud users are concerned about, and the load balancing concerned by cloud service providers. 4) aiming at the problem of genetic algorithm and large-scale cloud task scheduling, the algorithm has obvious advantages. Two local heuristic algorithms, mountain climbing and Tabu search, are introduced to make full use of the advantages of genetic algorithm (GA) for global optimization and for mountain climbing and Tabu search. The deficiency of the local solution ability of the genetic algorithm and the weak global optimization ability of the mountain climbing algorithm and the Tabu search algorithm are avoided. Finally, the cultural gene algorithm based on the Tabu search algorithm proposed in this paper is verified on the CloudSim simulation platform. In large scale cloud task scheduling environment, it shows higher execution efficiency and better load balance.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP18;TP301.6
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 聶世青;鐘勇;崔夢天;;一種基于負(fù)載熵的層次負(fù)載均衡算法[J];計算機(jī)應(yīng)用;2016年S2期
2 譚文安;查安民;陳森博;;優(yōu)化粒子群的云計算任務(wù)調(diào)度算法[J];計算機(jī)技術(shù)與發(fā)展;2016年07期
3 何婧媛;;云計算仿真工具CloudSim的研究與應(yīng)用[J];科技資訊;2016年02期
4 周春霞;周井泉;常瑞云;;基于Memetic算法的多目標(biāo)復(fù)雜網(wǎng)絡(luò)社區(qū)檢測[J];計算機(jī)技術(shù)與發(fā)展;2016年01期
5 周裊;葛洪偉;蘇樹智;;基于信息素的自適應(yīng)連續(xù)域混合蟻群算法[J];計算機(jī)工程與應(yīng)用;2017年06期
6 徐小龍;楊庚;李玲娟;王汝傳;;面向綠色云計算數(shù)據(jù)中心的動態(tài)數(shù)據(jù)聚集算法[J];系統(tǒng)工程與電子技術(shù);2012年09期
7 鄒永貴;萬建斌;;云計算環(huán)境下的資源管理研究[J];數(shù)字通信;2012年04期
8 劉之家;張體榮;謝雄程;;基于云計算的“用戶期待”任務(wù)調(diào)度算法的研究[J];大眾科技;2011年04期
9 李建鋒;彭艦;;云計算環(huán)境下基于改進(jìn)遺傳算法的任務(wù)調(diào)度算法[J];計算機(jī)應(yīng)用;2011年01期
10 晏婧;吳開貴;;適用于實例密集型云工作流的調(diào)度算法[J];計算機(jī)應(yīng)用;2010年11期
相關(guān)博士學(xué)位論文 前3條
1 劉琨;云計算負(fù)載均衡策略的研究[D];吉林大學(xué);2016年
2 鄧見光;云計算任務(wù)調(diào)度策略研究[D];華南理工大學(xué);2014年
3 蔡斌;基于文化基因算法的車間作業(yè)調(diào)度理論研究及實踐[D];重慶大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 楊倍思;云計算環(huán)境中基于同態(tài)加密的密文計算方法設(shè)計與實現(xiàn)[D];南京郵電大學(xué);2016年
2 蔣燕燕;面向未來網(wǎng)絡(luò)的虛擬網(wǎng)絡(luò)映射研究[D];南京郵電大學(xué);2016年
3 趙科偉;云環(huán)境下的任務(wù)調(diào)度算法研究[D];南京郵電大學(xué);2016年
4 陳睿;基于改進(jìn)粒子群蟻群算法的多目標(biāo)雙邊匹配問題研究[D];廣西大學(xué);2016年
5 光洋;愛恩斯坦棋計算機(jī)博弈系統(tǒng)的研究與實現(xiàn)[D];安徽大學(xué);2016年
6 周剛;基于多態(tài)蟻群算法的云計算節(jié)能資源調(diào)度[D];重慶大學(xué);2016年
7 張博洋;基于Hadoop的動車組故障診斷關(guān)鍵技術(shù)的研究與實現(xiàn)[D];北京交通大學(xué);2016年
8 竇文生;基于交通時空大數(shù)據(jù)的異常行為模式挖掘研究[D];杭州電子科技大學(xué);2016年
9 侍倩;基于差分進(jìn)化算法的多目標(biāo)優(yōu)化問題的研究[D];東華大學(xué);2016年
10 穆聰聰;倉儲管理貨位分配策略及應(yīng)用研究[D];華中科技大學(xué);2015年
,本文編號:2299384
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2299384.html