基于深度卷積神經(jīng)網(wǎng)絡(luò)的室外場景理解研究
[Abstract]:Scene understanding is a hot topic in the field of computer vision and artificial intelligence. Its research results have been widely used in many fields such as robot navigation, network search, security monitoring, medical care and so on. Various branch tasks of scene understanding, such as target detection, image semantic segmentation and so on, have made a breakthrough in recent years, but there are still many shortcomings. For example, it is difficult to obtain reliable and robust features for dynamic target classification in the scene because of the deformation of the target itself and the interference of external factors. Deep convolution neural network (Deep Convolutional Neural Networks,DCNN) can effectively realize semantic classification of scene images by end-to-end feature learning, but it is difficult to achieve accurate semantic segmentation of scene images. The main contents of this paper are as follows: 1) first of all, a dynamic object classification method based on multi-task space pyramid pool DCNN is proposed. Firstly, the dynamic object of scene in video is extracted by Gao Si mixed model, and the complete target image block is obtained by morphological processing. Then the target image block is sent into the multi-task space pyramid to pool DCNN to realize the classification of the target image block and the semantic label is obtained at the same time. The experimental results show that the high level convolution features are robust to partial occlusion, overlap, angle change, etc. Multi-task space pyramidal DCNN can achieve high classification accuracy and give accurate target semantic tags in dynamic target classification tasks. An outdoor scene semantic segmentation method combining DCNN and MeanShift image segmentation algorithm is proposed. Firstly, the scene image is presegmented by MeanShift algorithm, and then the sample image blocks are collected randomly in each local region after segmentation, and the probability of classification is obtained by sending them into DCNN. Finally, the category probability of the sample image block of each local region is averaged to obtain its semantic label, and then the semantic segmentation is realized. The effects of the size of DCNN convolution kernel, the number of convolution cores and the expansion of training data set on the result of scene image semantic segmentation are studied and analyzed. Compared with the SEVI-BOVW method based on SIFT local feature descriptor, the experimental results show that the accuracy and recognition speed of the method are greatly improved. Finally, a scene understanding method combining object detection and semantic segmentation is proposed based on DCNN,. It is combined with the semantic segmentation method of background object based on HOG (Histogram of Oriented Gradients) texture feature and support Vector Machine (Support Vector Machine,SVM) classification algorithm in the campus navigation of robot. In this method, the foreground object in scene image is detected by Faster R-CNN algorithm, and the foreground object in scene image is segmented by Deeplab-CRFs model. Finally, GrabCut foreground extraction algorithm detects the two objects. The segmentation results combine to achieve a more accurate and complete semantic segmentation of the target object. Experiments show that the proposed method can detect and segment objects accurately and comprehensively, and can be effectively used in robot campus navigation.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP391.41;TP183
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 顧勇;張燦果;龔志廣;;基于圖像塊分割融合算法在醫(yī)學(xué)圖像中的應(yīng)用[J];河北建筑工程學(xué)院學(xué)報(bào);2007年02期
2 李天偉;黃謙;郭模燦;何四華;;圖像塊混沌特征在海面運(yùn)動(dòng)目標(biāo)檢測中的應(yīng)用[J];中國造船;2011年02期
3 李軍;部分圖像塊的顯示及特技制作技巧[J];電腦編程技巧與維護(hù);1997年04期
4 李生金;蒲寶明;賀寶岳;王維維;;基于圖像塊的滯留物/移取物的檢測方法[J];小型微型計(jì)算機(jī)系統(tǒng);2014年01期
5 趙德斌;陳耀強(qiáng);高文;;基于圖像塊方向的自適應(yīng)無失真編碼[J];模式識(shí)別與人工智能;1998年01期
6 陳琦,李華,朱光喜;一種新的應(yīng)用于屏幕共享的圖像塊識(shí)別算法[J];電訊技術(shù);2000年06期
7 劉尚翼;霍永津;羅欣榮;白仲亮;魏林鋒;項(xiàng)世軍;;基于圖像塊相關(guān)性分類的加密域可逆數(shù)據(jù)隱藏[J];武漢大學(xué)學(xué)報(bào)(理學(xué)版);2013年05期
8 陳奮,閆冬梅,趙忠明;一種快速圖像塊填充算法及其在遙感影像處理中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用;2005年10期
9 馬文龍,余寧梅,銀磊,高勇;圖像塊動(dòng)態(tài)劃分矢量量化[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2005年02期
10 李維釗,王廣偉;圖像塊平坦測度與系數(shù)掃描方式選擇[J];山東電子;2000年04期
相關(guān)會(huì)議論文 前2條
1 李趙紅;侯建軍;宋偉;;基于圖像塊等級模型的多重認(rèn)證水印算法[A];第八屆全國信息隱藏與多媒體安全學(xué)術(shù)大會(huì)湖南省計(jì)算機(jī)學(xué)會(huì)第十一屆學(xué)術(shù)年會(huì)論文集[C];2009年
2 鐘凡;莫銘臻;秦學(xué)英;彭群生;;基于WSSD的不規(guī)則圖像塊快速匹配[A];中國計(jì)算機(jī)圖形學(xué)進(jìn)展2008--第七屆中國計(jì)算機(jī)圖形學(xué)大會(huì)論文集[C];2008年
相關(guān)博士學(xué)位論文 前5條
1 霍雷剛;圖像處理中的塊先驗(yàn)理論及應(yīng)用研究[D];西安電子科技大學(xué);2015年
2 欽夏孟;稠密圖像塊匹配方法及其應(yīng)用[D];北京理工大學(xué);2015年
3 林樂平;基于過完備字典的非凸壓縮感知理論與方法研究[D];西安電子科技大學(xué);2016年
4 向濤;復(fù)雜場景下目標(biāo)檢測算法研究[D];電子科技大學(xué);2016年
5 宋偉;幾類數(shù)字圖像水印算法的研究[D];北京交通大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 王榮麗;基于半監(jiān)督學(xué)習(xí)的目標(biāo)跟蹤方法研究[D];浙江師范大學(xué);2015年
2 祝漢城;數(shù)字圖像的客觀質(zhì)量評價(jià)方法研究[D];中國礦業(yè)大學(xué);2015年
3 陸杰;使用自組織增量神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)單層非監(jiān)督特征學(xué)習(xí)[D];南京大學(xué);2015年
4 熊耀先;基于圖像塊統(tǒng)計(jì)特性的EPLL遙感圖像復(fù)原方法[D];國防科學(xué)技術(shù)大學(xué);2014年
5 張書揚(yáng);基于冗余字典的圖像壓縮感知技術(shù)研究[D];吉林大學(xué);2016年
6 楊存強(qiáng);基于圖像塊多級分類和稀疏表示的超分辨率重建算法研究[D];天津工業(yè)大學(xué);2016年
7 李向向;視頻監(jiān)控下實(shí)時(shí)異常行為檢測研究[D];南京郵電大學(xué);2016年
8 程曉東;基于幀間塊約束和進(jìn)化計(jì)算的視頻壓縮感知重構(gòu)方法[D];西安電子科技大學(xué);2016年
9 李小青;基于脊波冗余字典和多目標(biāo)遺傳優(yōu)化的壓縮感知圖像重構(gòu)[D];西安電子科技大學(xué);2016年
10 文俊;基于深度卷積神經(jīng)網(wǎng)絡(luò)的室外場景理解研究[D];杭州電子科技大學(xué);2016年
,本文編號:2293486
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2293486.html