AGV定位導引與控制軟件系統(tǒng)的研究與設計
[Abstract]:AGV is a typical wheeled mobile robot, which integrates mechanical, photoelectric, computer, control, instrument and other disciplines. It has the advantages of high automation, safety and reliability, flexible application and so on. It is precisely because of these advantages of AGV that it is more and more widely used in automation workshop and modern logistics system. Using AGV to build automated logistics system can greatly improve the production efficiency. The study of AGV has profound theoretical and practical significance. Positioning guidance accuracy and motion control performance are the core evaluation indexes of AGV performance. In order to improve the positioning accuracy and motion control performance of AGV, this paper investigates a large number of domestic and international AGV documents, and takes the two-wheel differential drive AGV as the research object, and studies its kinematics. The main research contents are summarized as follows: 1. The overall requirements of AGV, the workflow and the design process of the driving system are introduced. By calibrating the three coordinate systems of AGV motion, the position and pose representation and transformation relation of AGV in each coordinate system are deduced, and the kinematics modeling and analysis of AGV are completed. According to the overall scheme, the hardware scheme of AGV positioning and guidance system is introduced, and then the guidance algorithm is designed, and the relative positioning algorithm and absolute positioning algorithm are designed respectively. Finally, the two parts of localization data are fused by adaptive weighting algorithm. 2. A comprehensive study of AGV motion control is carried out. The motion control law is designed by Lyapunov theory and pose error equation, and simulated by MATLAB, then the evaluation model of static, dynamic and comprehensive characteristics of AGV motion control is established. Finally, the influence of control law parameters on motion control is analyzed, and a sliding mode genetic algorithm is proposed, and then the evaluation function is used as the fitness function of sliding mode genetic algorithm to optimize the control law parameters. The kinematic performance of AGV before and after optimization is compared to verify the importance of parameter optimization. 3. The upper and lower computer software of AGV control system are designed respectively. On the one hand, by analyzing the development environment of the lower computer, and based on the development language of TwinCAT PLC, the main program of AGV and the man-machine interface of the lower computer are designed, on the other hand, the function modules of the upper computer software are divided. Using Visual Studio software as host computer software development platform, XAML as interface language and C # as backstage design language, the upper computer software platform of WPF is designed. Finally, the communication scheme between the upper computer and the lower computer is designed. By debugging the control software, the communication and data transmission between the upper computer and the lower computer are realized, and the functions of each function module are tested. Thus, the software design and implementation of the control system are completed.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242
【參考文獻】
相關期刊論文 前10條
1 王孫平;田喬;傅世忱;邵曉鵬;;QR碼導航的室內(nèi)目標搜尋機器人研究[J];計算機系統(tǒng)應用;2014年01期
2 武啟平;金亞萍;任平;查振元;;自動導引車(AGV)關鍵技術現(xiàn)狀及其發(fā)展趨勢[J];制造業(yè)自動化;2013年10期
3 夏凌楠;張波;王營冠;魏建明;;基于慣性傳感器和視覺里程計的機器人定位[J];儀器儀表學報;2013年01期
4 裴九芳;王海;許德章;;基于迭代學習控制的移動機器人軌跡跟蹤控制[J];計算機工程與應用;2012年09期
5 郭一江;王新民;謝蓉;;基于光學導引的無人機自動著陸控制系統(tǒng)設計[J];飛行力學;2011年02期
6 武星;樓佩煌;唐敦兵;;自動導引車路徑跟蹤和伺服控制的混合運動控制[J];機械工程學報;2011年03期
7 夏光;甄小云;王寰宇;趙力幟;;凝聚導航精英 推動“北斗”應用產(chǎn)業(yè)蓬勃發(fā)展——第一屆中國衛(wèi)星導航學術年會召開[J];國際太空;2010年05期
8 張辰貝西;黃志球;;自動導航車(AGV)發(fā)展綜述[J];中國制造業(yè)信息化;2010年01期
9 王皖君;張為公;;自動導引車導引技術研究現(xiàn)狀與發(fā)展趨勢[J];傳感器與微系統(tǒng);2009年12期
10 麻博;黃晉英;胡會珍;劉秀進;;智能機器人車自主導航控制系統(tǒng)設計[J];微計算機信息;2008年32期
相關博士學位論文 前1條
1 馬海濤;非完整輪式移動機器人的運動控制[D];中國科學技術大學;2009年
相關碩士學位論文 前10條
1 陳端平;輪式移動機器人監(jiān)控系統(tǒng)研究與開發(fā)[D];華南理工大學;2016年
2 張洪洋;基于TwinCAT的活塞異形外圓車床數(shù)控系統(tǒng)開發(fā)研究[D];山東大學;2015年
3 王志君;移動機器人全場定位系統(tǒng)的研究[D];電子科技大學;2015年
4 胡蝶;自動導引車(AGV)控制系統(tǒng)的研究與設計[D];湖北工業(yè)大學;2014年
5 管林波;移動機器人導航軟件及部分關鍵技術研究[D];浙江大學;2014年
6 王琳華;磁導式AGV自動導航車控制系統(tǒng)的設計[D];長沙理工大學;2013年
7 侯立梅;基于多傳感器數(shù)據(jù)融合智能導航車的算法研究[D];燕山大學;2013年
8 倪振;激光導引四輪差動全方位移動AGV關鍵技術研究[D];重慶大學;2013年
9 唐飛云;自主導航車軌跡跟蹤控制方法研究[D];大連理工大學;2012年
10 邵永成;視覺導向的智能AGV控制系統(tǒng)和模糊控制器設計[D];昆明理工大學;2011年
,本文編號:2288865
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2288865.html