基于卷積神經(jīng)網(wǎng)絡(luò)的運(yùn)動(dòng)目標(biāo)跟蹤研究
[Abstract]:With the advent of the information age, moving target tracking has become a hot spot in the field of computer vision and has wide application value in many fields. Although many moving target tracking algorithms have been proposed, there are still many difficulties in the actual tracking process, such as illumination change, occlusion, motion blur, scale change, self-change and so on. Therefore, the development of target tracking technology is still challenging. The emergence of depth learning theory and method provides a new opportunity for the research of target tracking, and is also the main theoretical framework for the research of moving target tracking algorithm in this paper. The main contents of this paper are as follows: (1) the basic knowledge of moving target tracking technology is studied. Starting with the representation method of target tracking, the basic knowledge of target tracking classification and the traditional feature extraction method are understood. (2) the basic theory of convolution neural network is studied. Firstly, based on the analysis of artificial neural network structure, the structure characteristics and training process of convolutional neural network are introduced. Secondly, the process of feature extraction based on convolution neural network is introduced. Compared with the traditional feature extraction and BP feature extraction, the effect is better than these two methods. (3) an improved algorithm of moving target tracking based on convolution neural network is proposed. The moving target tracking algorithm based on convolution neural network is a tracking algorithm which combines depth feature extraction particle filter and classifier. Firstly, the principal component analysis (Principal Component Analysis,PCA) technique is used to extract the PCA feature vector from the local image dataset, and then the convolutional neural network is initialized to extract the depth feature by using the PCA eigenvector. Finally, classifier and particle filter motion estimation are used to realize target recognition and tracking. The experimental results show that the proposed improved tracking algorithm can overcome the external interference and the change of the target itself in the tracking process, and is superior to the current mainstream tracking algorithms in terms of accuracy and success rate.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41;TP183
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 段紅燕;邵豪;張淑珍;張曉宇;王小宏;;一種基于Canny算子的圖像邊緣檢測(cè)改進(jìn)算法[J];上海交通大學(xué)學(xué)報(bào);2016年12期
2 任楠;杜軍平;朱素果;李玲慧;Jang Myung Lee;;基于混合特征的運(yùn)動(dòng)目標(biāo)跟蹤方法[J];北京郵電大學(xué)學(xué)報(bào);2016年06期
3 畢篤彥;庫(kù)濤;查宇飛;張立朝;楊源;;基于顏色屬性直方圖的尺度目標(biāo)跟蹤算法研究[J];電子與信息學(xué)報(bào);2016年05期
4 厲丹;田雋;肖理慶;孫金萍;程德強(qiáng);;基于主動(dòng)輪廓模型聯(lián)合Camshift算法的目標(biāo)跟蹤方法[J];電視技術(shù);2015年19期
5 李寰宇;畢篤彥;楊源;查宇飛;覃兵;張立朝;;基于深度特征表達(dá)與學(xué)習(xí)的視覺跟蹤算法研究[J];電子與信息學(xué)報(bào);2015年09期
6 郭麗麗;丁世飛;;深度學(xué)習(xí)研究進(jìn)展[J];計(jì)算機(jī)科學(xué);2015年05期
7 張煥龍;胡士強(qiáng);楊國(guó)勝;;基于外觀模型學(xué)習(xí)的視頻目標(biāo)跟蹤方法綜述[J];計(jì)算機(jī)研究與發(fā)展;2015年01期
8 宋佳聲;胡國(guó)清;焦亮;;改進(jìn)的幾何活動(dòng)輪廓演化及其在目標(biāo)跟蹤中的應(yīng)用[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
9 黃凱奇;陳曉棠;康運(yùn)鋒;譚鐵牛;;智能視頻監(jiān)控技術(shù)綜述[J];計(jì)算機(jī)學(xué)報(bào);2015年06期
10 鄭胤;陳權(quán)崎;章毓晉;;深度學(xué)習(xí)及其在目標(biāo)和行為識(shí)別中的新進(jìn)展[J];中國(guó)圖象圖形學(xué)報(bào);2014年02期
相關(guān)博士學(xué)位論文 前3條
1 胡錦龍;擴(kuò)展目標(biāo)特征提取與跟蹤技術(shù)研究[D];中國(guó)科學(xué)院研究生院(光電技術(shù)研究所);2015年
2 劉晴;基于區(qū)域特征的目標(biāo)跟蹤算法研究[D];北京理工大學(xué);2014年
3 陳曉飛;基于骨架的目標(biāo)表示和識(shí)別技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2004年
相關(guān)碩士學(xué)位論文 前2條
1 趙耀博;目標(biāo)跟蹤中的目標(biāo)表示方法研究[D];西北農(nóng)林科技大學(xué);2014年
2 許可;卷積神經(jīng)網(wǎng)絡(luò)在圖像識(shí)別上的應(yīng)用的研究[D];浙江大學(xué);2012年
,本文編號(hào):2208882
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2208882.html