粒子群響應(yīng)面建模法在ASPEN多因素優(yōu)化中的應(yīng)用
[Abstract]:The response surface optimization (RSM) method can be used to establish an approximate mathematical model between the experimental factors and the response values to further analyze the optimization problem of the response values, so this method is frequently used in engineering and scientific experiments. The accuracy of the test is influenced by the number of times of test and the structure of test site, and the number of times of test will affect the length of test period and the investment of funds. Therefore, it is very important to obtain a more accurate response surface model by using limited experimental data. By studying the least square fitting method of response surface model, it is found that its essence is to solve the coefficients of regression equation based on the experimental data and the minimum sum of square variance. After deeply understanding this mathematical mechanism, this paper proposes a new response surface modeling method, which is called particle swarm optimization (PSO), which is characterized by strong randomness, fast convergence speed, strong nonlinear ability and high stability of particle swarm optimization (PSO) algorithm. In this paper, the particle swarm response surface (PSO) method is used to establish a response surface model for the separation of acetic acid from acetic acid aqueous solution. The two-column process flow of extractive distillation of acetic acid was simulated by using the process simulation software Aspen Plus. The feed position of extraction distillation column X1, the feed position of extractant X2, the ratio of reflux X3, the feed quantity of extractant X4, the feed position of solvent recovery column X5, the ratio of reflux X6 and so on, which affect the energy consumption and the content of acetic acid in the product, are discussed. Sensitivity analysis was carried out. Then the optimum value range of the six main factors is selected and divided into five levels. The orthogonal experiment is carried out. The method effectively reduces the number of design points. The undetermined coefficient method and particle swarm response surface method were used to fit the regression equations of the content of acetic acid R1 and the total energy consumption R2 of two reboiler. The results show that the undetermined coefficient method can not get the correct fitting equation when some parameters are more and the polynomial is more complex, while the particle swarm response surface method can deal with the complex fitting problem, and the precision of the response surface can meet the requirements. According to the requirements of industry, this paper takes the acetic acid content in the product not less than 99.5% as the constraint condition, takes the minimum total energy consumption as the optimization goal, and uses the PSO algorithm for the constraint optimization. The minimum energy consumption and the corresponding operating conditions were obtained to meet the requirement of product mass fraction. The results show that the total heat load of the reboiler is 5372kW when the mass fraction of acetic acid is 0.9982. Compared with the results of single factor analysis using Sensitivity module of Aspen Plus in literature, 6545kW has a great advantage in energy saving. This method can better optimize the complex distillation column system and has certain guiding significance for industrial design and production.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:TP18
【相似文獻(xiàn)】
相關(guān)期刊論文 前5條
1 潘雷;谷良賢;;分塊響應(yīng)面法研究[J];計算機工程與應(yīng)用;2009年19期
2 李恩穎;李光耀;王琥;;混合響應(yīng)面法對汽車吸能部件優(yōu)化關(guān)鍵技術(shù)[J];計算機應(yīng)用研究;2008年02期
3 王琥;李光耀;李恩穎;韓旭;;基于響應(yīng)面法的汽車吸能部件優(yōu)化問題研究[J];系統(tǒng)仿真學(xué)報;2007年16期
4 王婭;谷正氣;李偉平;梁小波;彭國譜;;基于響應(yīng)面方法的某智能SUV平順性優(yōu)化[J];機械科學(xué)與技術(shù);2010年03期
5 ;[J];;年期
相關(guān)會議論文 前10條
1 杜家政;陽志光;隋允康;龍連春;;基于響應(yīng)面法的三心底結(jié)構(gòu)形狀優(yōu)化[A];北京力學(xué)學(xué)會第12屆學(xué)術(shù)年會論文摘要集[C];2006年
2 杜家政;隋允康;龍連春;;基于響應(yīng)面法的五心底結(jié)構(gòu)形狀優(yōu)化[A];北京力學(xué)會第14屆學(xué)術(shù)年會論文集[C];2008年
3 王正平;龍騰;劉莉;;多學(xué)科設(shè)計優(yōu)化中的多項式響應(yīng)面近似方法研究[A];第八屆全國信息獲取與處理學(xué)術(shù)會議論文集[C];2010年
4 宇慧平;隋允康;張軒;龍連春;;響應(yīng)面方法的改進(jìn)[A];北京力學(xué)會第13屆學(xué)術(shù)年會論文集[C];2007年
5 張立新;隋允康;;基于響應(yīng)面方法的桁架截面優(yōu)化[A];北京力學(xué)會第11屆學(xué)術(shù)年會論文摘要集[C];2005年
6 許英;;基于變f序列響應(yīng)面法的邊坡穩(wěn)定可靠性分析[A];第四屆全國船舶與海洋工程學(xué)術(shù)會議論文集[C];2009年
7 唐乃梅;隋允康;;基于響應(yīng)面法的膜結(jié)構(gòu)的截面優(yōu)化[A];中國力學(xué)學(xué)會學(xué)術(shù)大會'2005論文摘要集(下)[C];2005年
8 張軒;隋允康;;改進(jìn)的響應(yīng)面方法及其在形狀優(yōu)化中的應(yīng)用[A];北京力學(xué)會第11屆學(xué)術(shù)年會論文摘要集[C];2005年
9 陳華斌;任偉新;;基于響應(yīng)面的結(jié)構(gòu)有限元模型修正[A];第15屆全國結(jié)構(gòu)工程學(xué)術(shù)會議論文集(第Ⅰ冊)[C];2006年
10 李善坡;隋允康;;采用組合響應(yīng)面方法優(yōu)化爆炸分離裝置裝藥腔形狀[A];北京力學(xué)會第13屆學(xué)術(shù)年會論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 Chau Minh Quang(周明光);基于徑向基函數(shù)的結(jié)構(gòu)可靠性分析算法研究[D];湖南大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 馬迪;粒子群響應(yīng)面建模法在ASPEN多因素優(yōu)化中的應(yīng)用[D];太原理工大學(xué);2016年
2 趙潔;機械可靠性分析的響應(yīng)面法研究[D];西北工業(yè)大學(xué);2006年
3 王永菲;響應(yīng)面法的數(shù)值方法研究及其在懸掛參數(shù)優(yōu)化中的應(yīng)用[D];中央民族大學(xué);2006年
4 李松超;基于改進(jìn)響應(yīng)面法的飛機結(jié)構(gòu)可靠性分析[D];沈陽航空航天大學(xué);2012年
5 艾依斯;基于徑向基函數(shù)響應(yīng)面優(yōu)化方法研究[D];華中科技大學(xué);2012年
6 鄒林君;基于Kriging模型的全局優(yōu)化方法研究[D];華中科技大學(xué);2011年
7 張冬冬;基于高斯過程響應(yīng)面及核密度估計的有限元模型確認(rèn)方法的研究[D];南京航空航天大學(xué);2012年
8 黃新仁;響應(yīng)面法在生物過程優(yōu)化中的應(yīng)用[D];湖南大學(xué);2011年
9 劉靜;基于Fourier正交基神經(jīng)網(wǎng)絡(luò)改進(jìn)響應(yīng)面法的結(jié)構(gòu)可靠性分析[D];吉林大學(xué);2013年
10 馬寶勝;響應(yīng)面方法在多種實際優(yōu)化問題中的應(yīng)用[D];北京工業(yè)大學(xué);2007年
,本文編號:2199362
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2199362.html