超低頻隔振中絕對(duì)速度信號(hào)低頻帶擴(kuò)展技術(shù)
[Abstract]:In recent years, due to the development of science and technology, the accuracy and stability of various instruments and equipments have been continuously improved, and the influence of various kinds of vibration has become more and more prominent. How to effectively isolate low-frequency and ultra-low frequency vibration has become a hot and difficult point. Compared with passive vibration isolation technology, active vibration isolation technology has smaller vibration transfer rate and larger vibration isolation bandwidth. It is widely used in precision testing and ultra-precision manufacturing equipment. Magnetoelectric vibration velocity sensor is an important part of active vibration isolation system. Due to the limitation of environment, the sensor can not meet the requirements of both small volume and low frequency signal detection. Therefore, under the premise of not changing the mechanical structure of the sensor, it is of great practical value to select a reasonable compensation scheme and design a good compensation circuit and compensation software to meet the performance requirements. In this paper, the performance requirements of the vibration isolation system to the sensor are analyzed, and the working characteristics of all kinds of absolute vibration sensors are analyzed and compared. Finally, the key technical specifications and the type of the sensor are determined. On the basis of deeply analyzing the structure and working principle of magnetoelectric speed sensor, the dynamic model of the sensor and the transfer function of the sensor are established, and the amplitude-frequency characteristic of the sensor is obtained. According to the transfer function, the low frequency measurement limitation of the sensor and its reasons are analyzed, and the low frequency expansion scheme of the sensor is put forward. Finally, the zero pole compensation method is used for the low frequency expansion of the sensor. Due to the need for more accurate transfer function, this paper also studies many testing methods of magnetoelectric velocity sensor, such as DC excitation method, sinusoidal excitation signal method and shaking table method, etc. The advantages and disadvantages of various methods are analyzed and the DC excitation method is adopted to test the sensor parameters. The hardware circuit and software are designed and the accurate transfer function of the sensor is obtained. According to the measured transfer function and the principle of zero-pole compensation, the corresponding compensation hardware and software are designed to complete the signal processing. Finally, an experiment platform is built to identify the parameters of magnetoelectric speed sensor. The experimental results show that the relative error of DC excitation method is 0.35 and the relative error of damping ratio is 0.92. The test parameters are applied to the zero-pole compensation network and the low-frequency signal detection experiments are carried out to verify the low-frequency spread function of the expansion circuit and software to the magnetoelectric speed sensor. The experimental results show that the center frequency of the sensor can be reduced from 4.8Hz to 0.28Hz by both hardware circuit and software method, and the target of low frequency band expansion can be realized.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 魏繼東;;檢波器反褶積對(duì)低頻信息的補(bǔ)償作用[J];石油地球物理勘探;2016年02期
2 程麗娜;匙慶磊;;一種有源超低頻速度傳感器樣機(jī)的設(shè)計(jì)[J];傳感技術(shù)學(xué)報(bào);2012年08期
3 佘天莉;楊學(xué)山;王雷;楊巧玉;;基于DSP系統(tǒng)的測(cè)振傳感器低頻特性補(bǔ)償[J];儀表技術(shù)與傳感器;2010年04期
4 劉鳳舉;吳簡(jiǎn)彤;劉力;;基于雙線性變換法的IIR數(shù)字濾波器設(shè)計(jì)與matlab仿真[J];自動(dòng)化技術(shù)與應(yīng)用;2008年09期
5 佘天莉;侯興民;楊學(xué)山;;測(cè)振傳感器的低頻特性補(bǔ)償研究[J];傳感器與微系統(tǒng);2006年11期
6 俞阿龍,陳華寶;振動(dòng)速度傳感器的動(dòng)態(tài)性能改進(jìn)的軟件方法[J];淮陰師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2004年04期
7 楊學(xué)山;高峰;候興民;;Low-frequency characteristics extension for vibration sensors[J];Earthquake Engineering and Engineering Vibration;2004年01期
8 范云霄,于濤,楊俊茹,趙擁軍;超低頻振動(dòng)傳感器的研究[J];煤礦機(jī)電;2002年03期
9 劉恩澤,嚴(yán)濟(jì)寬,陳端石;噪聲主動(dòng)控制系統(tǒng)研究概況及發(fā)展趨勢(shì)[J];噪聲與振動(dòng)控制;1999年03期
相關(guān)會(huì)議論文 前1條
1 余水寶;張?bào)阊?成斌;鄭金菊;金永賢;;傳感器傳遞函數(shù)回歸算法及其應(yīng)用研究[A];第三屆全國(guó)信息獲取與處理學(xué)術(shù)會(huì)議論文集[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 張孝良;理想天棚阻尼的被動(dòng)實(shí)現(xiàn)及其在車輛懸架中的應(yīng)用[D];江蘇大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 蘇文;基于直流激勵(lì)的檢波器測(cè)試儀研制[D];吉林大學(xué);2016年
2 王夢(mèng)遠(yuǎn);基于FPGA的IIR數(shù)字濾波器設(shè)計(jì)[D];東南大學(xué);2016年
3 陳譯;基于FPGA的數(shù)字檢波器系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];蘇州大學(xué);2016年
4 童聲群;基于FPGA的動(dòng)圈檢波器參數(shù)測(cè)試儀的設(shè)計(jì)與實(shí)現(xiàn)[D];中國(guó)科學(xué)技術(shù)大學(xué);2015年
5 楊小龍;基于Stewart機(jī)構(gòu)的隔振技術(shù)研究[D];南京航空航天大學(xué);2014年
6 曹雙蘭;基于零極點(diǎn)補(bǔ)償法的低頻檢波器設(shè)計(jì)及其標(biāo)定方法研究[D];吉林大學(xué);2013年
7 段疾病;基于串行通信的地震檢波器綜合測(cè)試系統(tǒng)的設(shè)計(jì)實(shí)現(xiàn)[D];中國(guó)海洋大學(xué);2013年
8 肖明偉;磁電式振動(dòng)速度傳感器低頻特性補(bǔ)償?shù)难芯縖D];重慶大學(xué);2011年
9 劉雷鈞;主動(dòng)隔振系統(tǒng)傳感器信號(hào)調(diào)理技術(shù)研究[D];華中科技大學(xué);2011年
10 朱照;傳感器動(dòng)態(tài)特性模擬及動(dòng)態(tài)補(bǔ)償濾波器的DSP實(shí)現(xiàn)[D];中北大學(xué);2010年
,本文編號(hào):2199437
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2199437.html