高頻電液角振動(dòng)測(cè)試臺(tái)控制系統(tǒng)研究
[Abstract]:The high frequency electro-hydraulic angular vibration test bench is used to detect the signal tracking of gyroscopes under high frequency vibration. The high precision reproduction of high frequency sinusoidal signal is required in the position control state of the electro-hydraulic vibration test table. The research of servo control system is similar to that of electro-hydraulic shaking table, so the research of this paper is based on the research of electro-hydraulic vibration table. The hydraulic control system is easy to be affected by various nonlinear factors, the waveform distortion is large, and it is relatively difficult to work in the high frequency range. Therefore, it is one of the important research directions to design a reasonable control system to overcome the adverse influence of nonlinear factors and to realize the work of the high frequency region of the electro-hydraulic angle vibration test table. Firstly, according to the design scheme of hydraulic power mechanism and mechanical system, the mathematical model of valve-controlled swing motor system is built, and the related nonlinear problems are analyzed. Then the parameters of each link are determined and a three-state feedback compensation controller of position velocity and dynamic pressure is designed according to the principle of pole assignment. The feedback link of dynamic pressure is analyzed emphatically and the relevant debugging coefficient is determined by using the root locus method. The servo controller is used to improve the position distribution of the zero and pole points of the system, and the stability and dynamic performance of the system are improved. The simulation results are obtained by using Matlab/Simulink software to model and simulate the system. On the premise of satisfying the precision of amplitude control, in order to further improve the vibration frequency of the system, the PID iterative learning control strategy is added to the servo controller. The tracking performance of the system can be improved by iterative method to correct the unsatisfactory control signal with the deviation between the output signal and the given target. The hardware design of high-quality control system is the basis of realizing the basic function and high-precision motion of turntable. According to the technical requirements, this paper analyzes and designs the hardware and selection of the control system, and designs the schematic diagram of the circuit connection of the main control cabinet. On this basis, in order to prevent the motor blade from getting out of control and colliding with the inner wall of the motor cavity under the condition of high frequency vibration, a motor anti-collision controller is designed, the principle of complementary filter is mainly applied. The test prototype is built and the software part of the control system is designed, which mainly includes the design of the upper control interface and the programming of the lower RTX controller, and the addition of the limit protection program. Experiments show the effectiveness of the three-state servo controller and the PID iterative learning control strategy.
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宋世哲;鄧志良;;基于PLC與電液伺服的編環(huán)機(jī)控制系統(tǒng)設(shè)計(jì)[J];電子設(shè)計(jì)工程;2016年21期
2 賈文昂;阮健;;電液疲勞試驗(yàn)系統(tǒng)的變諧振控制技術(shù)研究[J];振動(dòng)與沖擊;2016年07期
3 豐章俊;阮健;金丁燦;孔晨菁;刁慧君;;單軸高頻電液振動(dòng)臺(tái)諧振現(xiàn)象的機(jī)理分析研究[J];液壓氣動(dòng)與密封;2016年04期
4 李偉榮;胡紅生;;高頻電液振動(dòng)臺(tái)諧振特性研究[J];流體傳動(dòng)與控制;2016年02期
5 韓笑;劉艷芳;徐向陽;唐樹晗;;Dynamic Simulation and Valve Structure Optimization of an Electro-Hydraulic Clutch Shift Control System in an Automatic Transmission[J];Journal of Donghua University(English Edition);2015年05期
6 ;Separate Control of High Frequency Electro-hydraulic Vibration Exciter[J];Chinese Journal of Mechanical Engineering;2011年02期
7 馬海軍;林勇強(qiáng);馮屹朝;;系統(tǒng)辨識(shí)理論在建模中的應(yīng)用[J];大眾科技;2010年05期
8 袁立鵬;崔淑梅;靳蒙;;基于迭代學(xué)習(xí)的液壓角振動(dòng)臺(tái)控制策略研究[J];宇航學(xué)報(bào);2010年03期
9 張正強(qiáng);李坤;王艷霞;;對(duì)z變換基本性質(zhì)的進(jìn)一步討論[J];電子技術(shù);2009年03期
10 朱亞輝;閔斌;余祖鑄;;高頻角振動(dòng)臺(tái)變負(fù)載的模型跟隨自適應(yīng)控制系統(tǒng)設(shè)計(jì)[J];上海航天;2008年05期
相關(guān)博士學(xué)位論文 前2條
1 李偉榮;高頻單軸電液振動(dòng)臺(tái)振動(dòng)特性研究[D];浙江工業(yè)大學(xué);2013年
2 趙勇;液壓振動(dòng)臺(tái)高精度正弦振動(dòng)的控制策略研究[D];哈爾濱工業(yè)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前9條
1 張健;基于復(fù)合模糊控制的雙缸電液位置同步系統(tǒng)研究[D];哈爾濱工業(yè)大學(xué);2016年
2 羅慕成;高頻響角振動(dòng)臺(tái)控制系統(tǒng)的研究[D];哈爾濱工業(yè)大學(xué);2016年
3 田志杰;隧道掘進(jìn)機(jī)刀具破巖試驗(yàn)臺(tái)電液控制系統(tǒng)[D];西南交通大學(xué);2015年
4 張西寧;迭代學(xué)習(xí)控制算法的改進(jìn)與應(yīng)用研究[D];江南大學(xué);2013年
5 楊帥;電液三軸飛行轉(zhuǎn)臺(tái)控制系統(tǒng)硬件設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2012年
6 關(guān)晉凱;單軸液壓角振動(dòng)臺(tái)振動(dòng)控制研究[D];哈爾濱工業(yè)大學(xué);2009年
7 史正強(qiáng);液壓角振動(dòng)臺(tái)信號(hào)處理方法的研究[D];哈爾濱工業(yè)大學(xué);2008年
8 周惠蒙;基于迭代學(xué)習(xí)控制的電液伺服振動(dòng)臺(tái)控制系統(tǒng)的研究[D];湖南大學(xué);2008年
9 靳蒙;三軸液壓角振動(dòng)臺(tái)的控制研究[D];哈爾濱工業(yè)大學(xué);2007年
,本文編號(hào):2196287
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2196287.html