天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

融合激光測距儀和慣導信息的移動機器人室內定位方法研究

發(fā)布時間:2018-08-21 20:45
【摘要】:隨著工業(yè)機器人技術的成熟,智能移動機器人進入蓬勃發(fā)展的階段,其中定位技術是解決移動機器人導航,實現(xiàn)全自主式移動機器人的關鍵技術。相比于室外環(huán)境下的移動機器人定位,室內環(huán)境下的定位精度要求更高,也更難實現(xiàn)。本文以雙輪差動式室內移動機器人為平臺,以激光測距儀、微慣性測量單元和編碼器為主要傳感器,探索在已知結構化環(huán)境下的移動機器人室內定位方案,分別從理論和實踐上進行了研究。首先,分別基于里程計和微慣性測量單元建立了兩輪差動式室內移動機器人的運動學模型;并就室內地面不平整或傾斜的情況提出了一種用于計算機器人初始姿態(tài)的對準算法;利用卡爾曼濾波將里程計和慣導數(shù)據(jù)進行融合,將運動過程中的橫滾角和俯仰角信息引入到位置更新算法中,有助于減小因地面坑洼、凸起或車輪打滑而導致的定位誤差;最后分別基于里程計、微慣性單元以及里程計/微慣性組合進行了仿真,驗證了所提出的位置更新算法的正確性。其次,針對激光測距儀數(shù)據(jù)線段分割中的過分割和過合并問題提出了一種基于Split-Merge框架的線段分割策略,并使用Hough變換方法擬合圓弧特征,成功提取出了環(huán)境中的線段和圓弧特征。然后,在環(huán)境特征提取的基礎上,制定了室內移動機器人初始定位方案和動態(tài)定位方案。初始定位算法以完整線段為特征進行地圖匹配,采用微慣性器件輔助激光測距儀的方式進行定位,優(yōu)化后的定位算法在非相似和對稱相似環(huán)境下進行仿真均取得了較好的定位效果。動態(tài)定位方案采用緊耦合的方式,使用無跡卡爾曼濾波對作為組合定位濾波器,減小了計算量,提高了定位精度,仿真結果表明了所使用的組合定位方案的有效性。最后,針對本文研究的定位方法搭建了室內移動機器人實驗平臺,分別在非相似環(huán)境和對稱相似環(huán)境兩種結構化環(huán)境下進行實驗研究。結果表明,室內移動機器人在兩種環(huán)境下均取得了較好的定位效果,特征提取算法能夠正確擬合環(huán)境中的線段和圓弧特征,初始對準算法的加入使激光測距儀在對稱相似環(huán)境下能夠正確辨識航向角,組合定位方案可以正確估計出機器人初始位置和運動過程中的軌跡。
[Abstract]:With the maturity of industrial robot technology, intelligent mobile robot has entered the stage of vigorous development, among which positioning technology is the key technology to solve the navigation of mobile robot and realize the full autonomous mobile robot. Compared with the mobile robot positioning in outdoor environment, the positioning accuracy in indoor environment is higher, and it is more difficult to achieve. Based on the two-wheel differential indoor mobile robot and laser rangefinder, micro-inertial measurement unit and encoder as the main sensors, this paper explores the indoor positioning scheme of the mobile robot in the known structured environment. Respectively from the theory and practice of the study. Firstly, the kinematics model of the two-wheel differential indoor mobile robot is established based on the mileage meter and the micro-inertial measurement unit, and an alignment algorithm for calculating the initial attitude of the robot is proposed to calculate the initial attitude of the robot when the indoor ground is uneven or tilted. Kalman filter is used to fuse the odometer and inertial navigation data, and the information of roll angle and pitch angle in the course of motion is introduced into the position updating algorithm, which is helpful to reduce the positioning error caused by the ground potholes, bumps or wheel skidding. Finally, based on the mileage meter, the micro inertial unit and the mileage / micro inertial combination, the correctness of the proposed position updating algorithm is verified. Secondly, aiming at the problem of over-segmentation and over-merging in data line segment segmentation of laser rangefinder, a line segment segmentation strategy based on Split-Merge framework is proposed, and Hough transform method is used to fit the arc feature. The features of lines and arcs in the environment are extracted successfully. Then, based on the extraction of environmental features, the initial localization scheme and dynamic localization scheme of indoor mobile robot are established. The initial location algorithm uses the complete line segment as the feature of map matching, and uses the micro-inertial device assisted laser rangefinder to locate. The simulation results of the optimized localization algorithm in dissimilar and symmetrical similar environments are satisfactory. The dynamic location scheme adopts the tight coupling method and uses the unscented Kalman filter as the combined positioning filter. The computation is reduced and the positioning accuracy is improved. The simulation results show the effectiveness of the combined positioning scheme. Finally, the indoor mobile robot experimental platform is built for the localization method studied in this paper, and the experimental research is carried out in two kinds of structured environments: dissimilar environment and symmetrical similar environment. The results show that the indoor mobile robot has achieved good localization effect in both environments, and the feature extraction algorithm can fit the line segment and arc feature of the environment correctly. With the addition of the initial alignment algorithm, the laser rangefinder can correctly identify the heading angle in the symmetrical similar environment, and the combined positioning scheme can correctly estimate the initial position and the trajectory of the robot in the course of motion.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP242

【參考文獻】

相關期刊論文 前10條

1 張一棟;;用于自主移動機器人的導航定位技術分析[J];集成電路應用;2017年02期

2 楊旭東;黃玉柱;李繼剛;李麗;李北斗;;變電站巡檢機器人研究現(xiàn)狀綜述[J];山東電力技術;2015年01期

3 龐鴻鋒;潘孟春;王偉;張琦;羅詩途;;基于高斯牛頓迭代算法的三軸磁強計校正[J];儀器儀表學報;2013年07期

4 梁明杰;閔華清;羅榮華;;基于圖優(yōu)化的同時定位與地圖創(chuàng)建綜述[J];機器人;2013年04期

5 肖鵬;欒貽青;郭銳;王明瑞;孫勇;;變電站智能巡檢機器人激光導航系統(tǒng)研究[J];自動化與儀表;2012年05期

6 張辰貝西;黃志球;;自動導航車(AGV)發(fā)展綜述[J];中國制造業(yè)信息化;2010年01期

7 王洪青;褚金奎;李榮華;李慶瀛;;并行超聲波測距系統(tǒng)在移動機器人上的應用[J];傳感器與微系統(tǒng);2008年09期

8 程水英;;無味變換與無味卡爾曼濾波[J];計算機工程與應用;2008年24期

9 趙小川;羅慶生;韓寶玲;;機器人多傳感器信息融合研究綜述[J];傳感器與微系統(tǒng);2008年08期

10 陳中偉;肖華;吳功平;;高壓巡線機器人電磁傳感器導航方法[J];傳感器與微系統(tǒng);2006年09期

相關博士學位論文 前5條

1 于清曉;輪式餐廳服務機器人移動定位技術研究[D];上海交通大學;2013年

2 張勤;基于信息融合的移動機器人三維環(huán)境建模技術研究[D];北京郵電大學;2013年

3 韓震峰;面向煤礦井下探測的多節(jié)履帶式機器人及其關鍵技術研究[D];哈爾濱工業(yè)大學;2012年

4 何昆鵬;MEMS慣性器件參數(shù)辨識及系統(tǒng)誤差補償技術[D];哈爾濱工程大學;2009年

5 王衛(wèi)華;移動機器人定位技術研究[D];華中科技大學;2005年

相關碩士學位論文 前10條

1 李昀澤;基于激光雷達的室內機器人SLAM研究[D];華南理工大學;2016年

2 安學成;基于自然路標的室內機器人雙目視覺絕對定位方法研究[D];吉林大學;2016年

3 徐強;基于無跡卡爾曼濾波的移動機器人室內定位算法研究[D];哈爾濱工業(yè)大學;2016年

4 汪洋;掃地機器人定位算法設計與嵌入式系統(tǒng)實現(xiàn)[D];中國科學技術大學;2016年

5 曾健;巡檢機器人UWB無線定位算法和導航控制系統(tǒng)的研究[D];哈爾濱工業(yè)大學;2015年

6 劉博;基于激光雷達的室內外巡檢移動機器人原型設計與實現(xiàn)[D];西南交通大學;2015年

7 董家志;基于UWB的室內定位與跟蹤算法研究[D];電子科技大學;2015年

8 張振東;基于激光雷達的服務機器人室內動態(tài)導航方法研究[D];哈爾濱工業(yè)大學;2014年

9 張治國;基于單目視覺的定位系統(tǒng)研究[D];華中科技大學;2009年

10 付軍;捷聯(lián)慣導算法研究及系統(tǒng)仿真[D];哈爾濱工業(yè)大學;2007年

,

本文編號:2196302

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2196302.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶94a16***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com