平均一依賴(lài)估測(cè)算法在個(gè)人信用評(píng)估中的研究
[Abstract]:With the rapid development of China's market economy, it is becoming a trend to take personal credit as guarantee to lend to banks. The number of credit loans and the amount of loans are increasing, which makes banks face the risk of customers defaulting. Therefore, before issuing credit loans to customers, The bank must evaluate its credit objectively and accurately according to the customers' true information, and make loans according to the credit situation, so as to reduce the losses caused by the customers' default. In this paper, the structural characteristics of sample dataset and Averaged One-Dependence estimation (Aode) model are analyzed. For the continuous attributes of the sample dataset, a discretization method is proposed, and the continuous attributes are discretized. It can effectively improve the classification accuracy of AODE model. Secondly, according to the attribute reduction rules of rough set theory, the irrelevant or unimportant index attributes can be deleted under the condition that the classification ability of information system remains unchanged. Finally, the Adaboost and AODE model are combined to construct the integrated Aode classifier, and the personal credit evaluation model is constructed. The main work of this paper is as follows: (1) an improved discrete particle swarm optimization algorithm is proposed to solve the continuous attribute discretization problem in the sample data set. The breakpoint set of continuous attributes is regarded as discrete particle swarm, and the breakpoint subset is minimized by the interaction between particles. At the same time, simulated annealing algorithm is introduced as a local search strategy, which improves the diversity of particle swarm and the ability of finding global optimal solution. The consistency of decision table is measured by the dependence of decision attributes on conditional attributes in rough set theory, so as to achieve the purpose of discretization of continuous attributes. (2) aiming at the redundancy of most index attributes in the sample data set and the lack of equal importance, most of the index attributes in the sample data set are redundant and do not have the same importance. It is unfavorable to make simple decision in data analysis. Reducing index attribute of sample data set is an important step of credit evaluation. In this paper, an attribute reduction algorithm based on Tabu discrete Particle Swarm Optimization (DPSO) is proposed to select individual credit evaluation indexes. Because Tabu search algorithm has strong dependence on initial solution, and discrete particle swarm optimization algorithm is easy to fall into local optimal solution during iteration, discrete particle swarm optimization algorithm is used to search globally in the process of index selection. Tabu search algorithm searches locally, removes redundant attributes, simplifies knowledge base, and constructs individual credit evaluation index set without affecting classification quality. (3) AODE model is used for classification. Each superparent One-Dependence estimation model (SPODE) has the same contribution to the classification, but each SPODE model has different structure and different influence on the final classification results. In this paper, we propose a corresponding improvement to the structural weakness of the average-dependence estimation algorithm. First of all, a certain number of SPODE models are selected to form an average dependency estimation model from each of the super-parent sole dependence estimation models, and then the integrated AODE classification model is constructed by using Adaboost algorithm. Finally, the integrated AODE classification model is applied to personal credit assessment. The simulation results show that the integrated AODE evaluation model can effectively improve the prediction accuracy of personal credit assessment.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP18
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張智磊;劉三陽(yáng);;基于回溯搜索算法的決策粗糙集屬性約簡(jiǎn)[J];計(jì)算機(jī)工程與應(yīng)用;2016年10期
2 戴上平;劉素軍;鄭素菲;;基于GA-PSO的粗糙集屬性約簡(jiǎn)算法[J];計(jì)算機(jī)工程與科學(xué);2015年02期
3 汪凌;;一種基于改進(jìn)粒子群的連續(xù)屬性離散化算法[J];計(jì)算機(jī)工程與應(yīng)用;2013年21期
4 張?chǎng)?張化祥;;屬性加權(quán)的樸素貝葉斯集成分類(lèi)器[J];計(jì)算機(jī)工程與應(yīng)用;2010年29期
5 周傳華;王清;趙保華;韋偉;;基于交叉熵方法的選擇性AODE算法[J];系統(tǒng)仿真學(xué)報(bào);2009年10期
6 許磊;張鳳鳴;靳小超;;基于小生境離散粒子群優(yōu)化的連續(xù)屬性離散化算法[J];數(shù)據(jù)采集與處理;2008年05期
7 陳果;;基于遺傳算法的決策表連續(xù)屬性離散化方法[J];儀器儀表學(xué)報(bào);2007年09期
8 胡建秀;曾建潮;;微粒群算法中慣性權(quán)重的調(diào)整策略[J];計(jì)算機(jī)工程;2007年11期
9 汪杭軍;張廣群;方陸明;;粗糙集屬性約簡(jiǎn)算法的實(shí)現(xiàn)與應(yīng)用[J];計(jì)算機(jī)工程與設(shè)計(jì);2007年04期
10 李旭升;郭耀煌;;基于樸素貝葉斯分類(lèi)器的個(gè)人信用評(píng)估模型[J];計(jì)算機(jī)工程與應(yīng)用;2006年30期
相關(guān)碩士學(xué)位論文 前10條
1 邵笑笑;個(gè)人信用評(píng)估集成模型研究[D];南京信息工程大學(xué);2016年
2 劉艷芳;基于分類(lèi)器選擇的個(gè)人信用評(píng)估組合模型研究[D];哈爾濱工業(yè)大學(xué);2015年
3 齊;;基于關(guān)聯(lián)規(guī)則的加權(quán)AODE模型的研究[D];吉林大學(xué);2015年
4 鄭晶;基于層級(jí)屬性約簡(jiǎn)的AODE分類(lèi)算法的研究[D];吉林大學(xué);2015年
5 胡來(lái)豐;基于粗糙集BP神經(jīng)網(wǎng)絡(luò)個(gè)人信用評(píng)估模型[D];電子科技大學(xué);2015年
6 付偉;基于改進(jìn)的BP神經(jīng)網(wǎng)絡(luò)的農(nóng)戶(hù)小額信用貸款風(fēng)險(xiǎn)評(píng)估模型研究[D];安徽大學(xué);2014年
7 陳曦;離散粒子群算法的改進(jìn)及其應(yīng)用研究[D];安徽大學(xué);2014年
8 范彥勤;基于貝葉斯分類(lèi)器的個(gè)人信用評(píng)估研究[D];西安電子科技大學(xué);2014年
9 徐鑫柱;基于支持向量機(jī)和BP神經(jīng)網(wǎng)絡(luò)的個(gè)人信用評(píng)估模型研究[D];內(nèi)蒙古大學(xué);2013年
10 王飛;集成分類(lèi)器及其在個(gè)人信用評(píng)估的應(yīng)用[D];中南大學(xué);2012年
,本文編號(hào):2133911
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2133911.html