基于RSSI的無線傳感器網(wǎng)絡(luò)定位算法的研究與實(shí)現(xiàn)
[Abstract]:With the rapid development of computer technology, communication technology and embedded system, wireless sensor network (WSN) has become an important research field. WSN is to spread a large number of sensor nodes randomly in the monitoring area. An intelligent network system is formed by automatic networking to monitor the target, and then the monitored data are processed and transmitted to the management user. Node location technology is the basis of WSN monitoring, prediction and identification technology. In the whole network, a few nodes with self-positioning GPS modules are usually selected and regarded as anchor nodes, while the nodes under test have strong self-organization ability. The location algorithm with good connectivity and high positioning accuracy is used to realize node localization. In this paper, we mainly study the location algorithm based on distance measurement and the location algorithm of non-dependent ranging. The localization algorithm based on ranging is mainly used to measure the angle or distance between the nodes. The location accuracy is relatively high and can meet the needs of many applications. Therefore, the location algorithm of wireless sensor networks based on received signal intensity indication (RSSI) is deeply studied. Because of the large errors in the location and location process of nodes, the error of the algorithm is improved in this paper. The improved node localization algorithm firstly establishes the Kalman filter model and uses it to smooth the RSSI signal value of the communication node so that the signal intensity value of the node under test is closer to the real value. Then the reciprocal sum of the distance between the nodes to be tested and the adjacent anchor nodes is selected as the weight factor. At the same time, the weight factor is modified by the measurement distance between the communication nodes. The second weighted centroid positioning algorithm is used to locate the coordinates of the nodes to be tested. Finally, the location mean difference is obtained by locating the anchor nodes which are close to the measured nodes, and the errors of the measured nodes are compensated. Through simulation experiments, the improved localization algorithm proposed in this paper improves the positioning accuracy by 5- 6% compared with the weighted centroid algorithm based on RSSI.
【學(xué)位授予單位】:沈陽航空航天大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212.9;TN929.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 施偉;高軍;;無線傳感器網(wǎng)絡(luò)中基于RSSI的改進(jìn)加權(quán)質(zhì)心定位算法[J];計算機(jī)應(yīng)用與軟件;2015年12期
2 林方旭;朱明華;;基于RSSI的自適應(yīng)分段曲線擬合室內(nèi)定位算法[J];傳感器與微系統(tǒng);2015年10期
3 史洪華;鐘俊;葉有名;;基于RSSI的無線傳感器網(wǎng)絡(luò)圓環(huán)質(zhì)心定位算法[J];計算機(jī)系統(tǒng)應(yīng)用;2015年08期
4 崔法毅;邵冠蘭;;基于RSSI多邊定位誤差的加權(quán)質(zhì)心定位算法[J];紅外與激光工程;2015年07期
5 周林;張厚望;;無線傳感器網(wǎng)絡(luò)中基于RSSI的質(zhì)心定位算法研究[J];現(xiàn)代電子技術(shù);2015年01期
6 文春武;宋杰;姚家振;;基于RSSI校正的無線傳感器網(wǎng)絡(luò)定位算法[J];傳感器與微系統(tǒng);2014年12期
7 喬欣;常飛;丁恩杰;王桃;;基于跳距修正的WSN擬牛頓迭代定位算法[J];傳感技術(shù)學(xué)報;2014年06期
8 溫家旺;王敬東;施喬明;王佳偉;;基于RSSI線性回歸分析的無線傳感器網(wǎng)絡(luò)定位方法[J];指揮控制與仿真;2014年03期
9 蔡曉宇;張愛清;葉新榮;;基于RSSI的無線傳感器網(wǎng)絡(luò)節(jié)點(diǎn)定位算法研究[J];通信技術(shù);2014年06期
10 吳君欽;盧陶;;基于RSSI測距的無線傳感器網(wǎng)絡(luò)定位算法[J];微電子學(xué)與計算機(jī);2014年05期
相關(guān)博士學(xué)位論文 前1條
1 鐘智;具有移動節(jié)點(diǎn)的無線傳感器網(wǎng)絡(luò)定位算法和數(shù)據(jù)收集協(xié)議研究[D];中南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 李成嶺;基于RSSI的無線自組織網(wǎng)絡(luò)室內(nèi)定位算法研究與實(shí)現(xiàn)[D];上海交通大學(xué);2012年
,本文編號:2134016
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2134016.html