面向?qū)ο蟮挠跋穹治龇椒☉?yīng)用研究
[Abstract]:Nowadays, with the improvement of spatial resolution of remote sensing image, the traditional image analysis method based on pixel can not only not make full use of the spatial detail information in the image, but also have a large error of missing and error. At the same time, more serious "salt and pepper noise" appeared, which greatly affected the accuracy of various application results. The object-oriented image analysis method can effectively suppress the above problems, so it has received wide attention in geoscience field. In this paper, the object oriented image analysis method is used to study the terrain object segmentation based on high resolution remote sensing image and the extraction of special geomorphologic object. The main work accomplished in this paper is: 1. This paper proposes an object oriented remote sensing image change detection method based on KL divergence, which is classified by natural split point method by calculating the KL divergence value. It is different from the traditional change detection method. In this paper, the optimal parameters of object oriented image segmentation are first calculated, and the images with different phases are segmented, and the image objects are processed by topological superposition. Then, the grayscale partition statistics of each image object are carried out, and the KL divergence is calculated. Finally, the variation degree of the KL divergence is divided by different classification methods, and the influence of different segmentation parameters and different classification methods on the variation degree is analyzed. The automatic terrain region segmentation method based on regional growth method is realized. In this method, the runoff nodes of the actual valley network are taken as seed points, the corresponding growth threshold is established on the basis of statistical analysis of the quantitative index of terrain characteristics, and the image processing and edge boundary extraction of the segmented region are carried out. The obtained boundary line is used to realize the automatic segmentation of terrain area. By using this method, taking the typical loess plateau landform area of China as an example, using and analyzing the curvature structure characteristics of the surface section of this area, the automatic segmentation of the three topographic types of gully, gully slope and furrow bottom is realized. Three special topographic objects. 3 are generated. Based on the object oriented method, the image segmentation levels of the terrain between gully, slope and bottom are established, and the multiscale segmentation parameters are designed according to the geomorphological features of the gully head. The multi-scale segmentation of gully slope level is carried out to generate the image object for the gully head region. Based on the combination of hydrological characteristics, topographic information and spatial data topological relation, the recognition model of gully head object is established to realize the recognition of gully head in a large area of river basin.
【學(xué)位授予單位】:山東科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP751
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田丹;劉愛(ài)利;丁滸;張?chǎng)?齊威;;地貌形態(tài)類(lèi)型面向?qū)ο蠓诸?lèi)法的改進(jìn)[J];地理與地理信息科學(xué);2016年02期
2 劉瑋;李發(fā)源;熊禮陽(yáng);劉雙琳;王軻;;基于區(qū)域生長(zhǎng)的黃土地貌溝沿線提取方法與實(shí)驗(yàn)[J];地球信息科學(xué)學(xué)報(bào);2016年02期
3 佃袁勇;方圣輝;姚崇懷;;一種面向地理對(duì)象的遙感影像變化檢測(cè)方法[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2014年08期
4 ZHU Hongchun;TANG Guoan;QIAN Kejian;LIU Haiying;;Extraction and Analysis of Gully Head of Loess Plateau in China Based on Digital Elevation Model[J];Chinese Geographical Science;2014年03期
5 李亮;龔煈;李雪;王凱;;像斑直方圖相似性測(cè)度的高分辨率遙感影像變化檢測(cè)[J];遙感學(xué)報(bào);2014年01期
6 祝錦霞;王珂;;面向?qū)ο蟮母叻直媛视跋褡兓瘷z測(cè)方法研究[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2013年04期
7 宋效東;湯國(guó)安;周毅;田劍;;基于并行GVF Snake模型的黃土地貌溝沿線提取[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2013年01期
8 周啟鳴;;多時(shí)相遙感影像變化檢測(cè)綜述[J];地理信息世界;2011年02期
9 晏實(shí)江;湯國(guó)安;李發(fā)源;董有福;;利用DEM邊緣檢測(cè)進(jìn)行黃土地貌溝沿線自動(dòng)提取[J];武漢大學(xué)學(xué)報(bào)(信息科學(xué)版);2011年03期
10 陳杰;鄧敏;肖鵬峰;楊敏華;梅小明;;粗糙集高分辨率遙感影像面向?qū)ο蠓诸?lèi)[J];遙感學(xué)報(bào);2010年06期
相關(guān)博士學(xué)位論文 前3條
1 湯玉奇;面向?qū)ο蟮母叻直媛视跋癯鞘卸嗵卣髯兓瘷z測(cè)研究[D];武漢大學(xué);2013年
2 周毅;基于DEM的黃土高原正負(fù)地形及空間分異研究[D];南京師范大學(xué);2011年
3 黃慧萍;面向?qū)ο笥跋穹治鲋械某叨葐?wèn)題研究[D];中國(guó)科學(xué)院研究生院(遙感應(yīng)用研究所);2003年
相關(guān)碩士學(xué)位論文 前5條
1 羅裳;基于KL熵矩陣近似問(wèn)題的研究[D];華南理工大學(xué);2014年
2 勞小敏;基于對(duì)象的高分辨率遙感影像土地利用變化檢測(cè)技術(shù)研究[D];浙江大學(xué);2013年
3 周增坡;基于多源數(shù)據(jù)的典型地貌形態(tài)特征提取方法研究[D];東北師范大學(xué);2009年
4 陳紹宇;高塬溝壑區(qū)溯源侵蝕發(fā)生發(fā)育規(guī)律研究[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2009年
5 宋佳;基于DEM的我國(guó)地貌形態(tài)類(lèi)型自動(dòng)劃分研究[D];西北大學(xué);2006年
,本文編號(hào):2125649
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2125649.html