基于IMU的可穿戴式人體行為識別系統(tǒng)設(shè)計與實現(xiàn)
[Abstract]:In recent years, with the Inertial Measurement Unit (IMU) technology, the rapid development of the wireless body domain network and the maturity of the pattern recognition theory, the human body motion recognition based on wearable technology has gradually gained the attention of the researchers, and has become a hot topic in this field. The sensor behavior recognition shows the advantages of low power consumption, good portability and low cost. It has been widely used in medical rehabilitation, human-computer interaction, virtual reality and other fields. In this paper, the human behavior recognition method based on the motion information fusion of wearable multi-sensor is studied, and the research content of the daily human motion pattern is realized. Including and several aspects: (1) on the basis of the existing inertial measurement unit, a wearable human behavior recognition system is designed, which is mainly composed of microprocessors, three axis accelerometers, three axis gyroscopes, power modules and so on. Through low power Bluetooth wireless communication, the system is continuously transmitted to the Android host computer. Speed, angular velocity of human motion information, and on the Android platform, the real-time reception, dynamic display and storage of human motion information are realized. (2) the advantages and disadvantages of the attitude angle based on accelerometers and the gyroscope to calculate the attitude angle of the human body are compared and analyzed, and the accuracy of the algorithm is low and the stability is poor. In this way, an algorithm based on accelerometer to calculate the attitude angle of the human body attitude angle is proposed, which combines the acceleration and angular velocity data into an organic fusion, real-time and accurate calculation of the attitude angle of the human body. (3) the human body motion information is analyzed in time domain and frequency domain analysis to distinguish the human body's daily behavior, and the human body is transported by the human body. (four) the human body's daily behavior is distinguished from the human body and the human body is transported by the human body. On the basis of dynamic data acquisition experiment, the time domain feature, frequency domain feature and attitude angle of human motion data are used as recognition features, and a multi classification behavior recognition algorithm based on support vector machine is proposed, and human motion pattern recognition is carried out. The experimental results show that the system can realize the accurate recognition of human activities.
【學(xué)位授予單位】:南京信息工程大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP212.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 吳恩英;呂佳;;基于二叉樹支持向量機多類分類算法的研究[J];重慶師范大學(xué)學(xué)報(自然科學(xué)版);2016年03期
2 茍濤;;基于可穿戴式三軸加速度傳感器的人體行為識別[J];自動化應(yīng)用;2015年12期
3 韓文正;馮迪;李鵬;馬文超;;基于加速度傳感器LIS3DH的計步器設(shè)計[J];傳感器與微系統(tǒng);2012年11期
4 趙正旭;戴歡;趙文彬;袁潔;;基于慣性動作捕捉的人體運動姿態(tài)模擬[J];計算機工程;2012年05期
5 呂松棟;黎卓芳;;藍(lán)牙4.0低功耗技術(shù)及其認(rèn)證要求[J];現(xiàn)代電信科技;2011年10期
6 錢華明;夏全喜;闕興濤;張強;;基于Kalman濾波的MEMS陀螺儀濾波算法[J];哈爾濱工程大學(xué)學(xué)報;2010年09期
7 李月香;劉燕;袁濤;王文劍;;基于加速度信號的走路模式多級分類算法[J];電子學(xué)報;2009年08期
8 杜曉東,李岐強;支持向量機及其算法研究[J];信息技術(shù)與信息化;2005年03期
9 郝建民;采樣定理的內(nèi)在不自洽性和工程應(yīng)用的局限性——采樣定理和奈奎斯特準(zhǔn)則研究·上篇[J];導(dǎo)彈與航天運載技術(shù);1997年02期
相關(guān)會議論文 前1條
1 喬親旺;;物聯(lián)網(wǎng)應(yīng)用層關(guān)鍵技術(shù)研究[A];中國通信學(xué)會信息通信網(wǎng)絡(luò)技術(shù)委員會2011年年會論文集(下冊)[C];2011年
相關(guān)博士學(xué)位論文 前1條
1 趙海勇;基于視頻流的運動人體行為識別研究[D];西安電子科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前8條
1 蘇婷;傳感器信息集成在人體運動姿態(tài)捕獲與識別中的應(yīng)用研究[D];哈爾濱理工大學(xué);2015年
2 崔英輝;基于物聯(lián)網(wǎng)老人監(jiān)護跟蹤終端的設(shè)計[D];安徽理工大學(xué);2013年
3 韓寧;基于體感網(wǎng)的步態(tài)分析算法的研究[D];大連理工大學(xué);2013年
4 閆俊澤;基于三軸加速度傳感器的老年人跌倒監(jiān)測系統(tǒng)的開發(fā)[D];哈爾濱工業(yè)大學(xué);2012年
5 徐時偉;用于空中手寫的加速度傳感器積累誤差消除技術(shù)研究[D];浙江大學(xué);2012年
6 劉幸奇;基于運動捕捉數(shù)據(jù)的人體運動合成[D];北京交通大學(xué);2010年
7 王昌喜;基于加速度信息的上肢動作識別系統(tǒng)設(shè)計及動作質(zhì)量評價方法的研究[D];中國科學(xué)技術(shù)大學(xué);2010年
8 趙祥欣;基于三維加速度傳感器的跌倒監(jiān)測研究[D];浙江大學(xué);2008年
,本文編號:2125770
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2125770.html