壓電陶瓷驅動微位移平臺及控制系統(tǒng)研究
本文選題:精密定位 + 壓電微位移平臺�。� 參考:《昆明理工大學》2017年碩士論文
【摘要】:精密定位技術已成為高新技術領域的核心之一,在尖端工業(yè)生產(如微納CPU的生產、MEMS微納機電系統(tǒng)的加工制造等)和科學研究(如細胞注射、AFM原子力學顯微鏡精度的提高等)中占有極其重要的地位。因此,對精密定位技術的研究成為了全球科學家和學者關注的熱點。而精密定位技術定位精確度的提高、準確度的增強、分辨力的提升以及定位速度的提高一直是該技術研究的難點。為此,本文以自行搭建的壓電微位移平臺精密定位系統(tǒng)作為研究對象,編寫了相關的控制程序,對壓電微位移平臺遲滯特性進行了建模,通過基于電壓補償前饋控制及PID反饋控制的閉環(huán)控制方法對其遲滯進行了補償,以達到線性控制的目的。主要的研究類容如下:1.針對XP-611型壓電微位移平臺,搭建了基于壓電微位移平臺的精密定位實驗系統(tǒng)。實驗系統(tǒng)由以下幾個工作模塊組成:位移傳感模塊、驅動電源模塊、壓電微動工作臺、計算機機控制系統(tǒng)。2.針對以一體式壓電微位移平臺XP-611為核心的精密定位實驗系統(tǒng),采用基于LabVIEW的數據采集程序對微位移工作臺的數據進行采集。采用基于MATLAB的測試程序對微位移平臺的特性進行測試。3.對壓電微位移平臺的遲滯特性進行了研究,闡明了其遲滯非線性機理,并利用Bouc-Wen模型對其遲滯特性進行數學描述。通過分析該模型的優(yōu)缺點,發(fā)現該模型在壓電微位移平臺快速定位中存在建模不準確的現象,提出了以Bouc-Wen模型為核心結合壓電微位移平臺固有特性的復合建模方式。建立的復合模型在平臺快速定位實驗中,能夠提升模型的準確率,驗證了該復合模型的優(yōu)越性,同時還建立了基于Bouc-Wen遲滯模型機理的類Bouc-Wen遲滯模型,以應用于有時效性要求的壓電微位移平臺的快速定位中。4.根據建立的遲滯模型,編寫了相應的控制算法,以消除壓電微位移平臺的遲滯特性,達到線性控制的目的,具體為:分析了 Bouc-Wen模型的特點,編寫了以電壓補償為前饋環(huán)節(jié),PID控制反饋環(huán)節(jié)的閉環(huán)控制程序,將壓電微位移臺的遲滯電壓進行補償,以達到線性輸出的目的,并和單一使用PID控制的方法以及單一使用Bouc-Wen模型電壓補償控制的方法進行了對比,驗證了復合控制的優(yōu)越性。
[Abstract]:Precision positioning technology has become one of the core fields of high and new technology. It plays a very important role in the advanced industrial production (such as the fabrication of MEMS MEMS micromechanical systems) and scientific research (such as the improvement of the precision of AFM atomic mechanical microscope). Therefore, the research of precision positioning technology has become the focus of attention of scientists and scholars all over the world. The improvement of positioning precision, accuracy, resolution and positioning speed are the difficulties in the research of precision positioning technology. Therefore, in this paper, the precision positioning system of piezoelectric micro-displacement platform is taken as the research object, and a related control program is compiled to model the hysteresis characteristics of the piezoelectric micro-displacement platform. The hysteresis is compensated by the closed-loop control method based on voltage compensation feedforward control and pid feedback control to achieve the purpose of linear control. The main categories of research are as follows: 1. Aiming at the XP-611 piezoelectric micro displacement platform, a precision positioning experiment system based on the piezoelectric micro displacement platform is built. The experimental system consists of the following working modules: displacement sensing module, driving power module, piezoelectric micromotion table, computer control system. Aiming at the precision positioning experiment system based on the integrated piezoelectric micro-displacement platform XP-611, the data acquisition program based on LabVIEW is used to collect the data of the micro-displacement table. The testing program based on MATLAB is used to test the characteristics of micro displacement platform. 3. 3. The hysteresis characteristics of piezoelectric micro-displacement platform are studied, the nonlinear hysteresis mechanism is explained, and the hysteresis characteristics of piezoelectric micro-displacement platform are described by using Bouc-Wen model. By analyzing the advantages and disadvantages of the model, it is found that the model is not accurate in the rapid positioning of piezoelectric micro-displacement platform. A composite modeling method based on Bouc-Wen model and inherent characteristics of piezoelectric micro-displacement platform is proposed. The composite model can improve the accuracy of the model in the platform rapid positioning experiment, and verify the superiority of the composite model. At the same time, the Bouc-Wen hysteresis model based on Bouc-Wen hysteresis model mechanism is established. In order to apply to the rapid positioning of piezoelectric micro-displacement platform with time-dependent requirements. 4. According to the established hysteresis model, the corresponding control algorithm is compiled to eliminate the hysteresis characteristics of the piezoelectric micro-displacement platform and to achieve the purpose of linear control. The characteristics of Bouc-Wen model are analyzed. A closed-loop control program with voltage compensation as feedforward link and pid control feedback link is written to compensate the hysteresis voltage of piezoelectric microdisplacement table in order to achieve the purpose of linear output. Compared with the single pid control method and the single Bouc-Wen model voltage compensation control method, the superiority of the compound control is verified.
【學位授予單位】:昆明理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP273
【參考文獻】
相關期刊論文 前10條
1 楊曉京;彭蕓浩;李堯;;壓電微位移臺的動態(tài)遲滯建模及實驗驗證[J];光學精密工程;2016年09期
2 崔玉國;朱耀祥;馬劍強;方凡;;壓電微動平臺的定位控制[J];振動與沖擊;2015年17期
3 東方;;基于Ziegler-Nichols法則的PID控制器參數整定[J];自動化與儀器儀表;2015年07期
4 王代華;嚴松林;朱煒;;基于Bouc-Wen模型的壓電執(zhí)行器的前饋線性化控制器[J];儀器儀表學報;2015年07期
5 袁剛;張小波;王代華;陳敏;;壓電式快速控制反射鏡的遲滯特性及線性化[J];光學精密工程;2015年06期
6 徐運揚;徐康康;沈平;;AFM壓電陶瓷驅動器類Hammerstein建模與參數辨識[J];傳感技術學報;2015年01期
7 裘進浩;陳海榮;陳遠晟;杜建周;;壓電驅動器的非對稱遲滯模型[J];納米技術與精密工程;2012年03期
8 賴志林;劉向東;耿潔;李黎;;壓電陶瓷執(zhí)行器遲滯的滑模逆補償控制[J];光學精密工程;2011年06期
9 王代華;朱煒;;WTYD型壓電陶瓷微位移器的遲滯特性建模與實驗驗證[J];光學精密工程;2010年01期
10 張棟;張承進;魏強;;壓電微動工作臺的動態(tài)遲滯模型[J];光學精密工程;2009年03期
相關碩士學位論文 前1條
1 桑武斌;二維超精工件臺及其控制系統(tǒng)的研究[D];浙江大學;2008年
,本文編號:2100236
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2100236.html