天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 自動化論文 >

LGS聲表面波傳感器溫度應變特性研究

發(fā)布時間:2018-07-05 15:24

  本文選題:LGS + SAW傳感器; 參考:《電子科技大學》2017年碩士論文


【摘要】:聲表面波(Surface acoustic wave,SAW)器件因為其具有體積小、品質(zhì)因數(shù)高、響應快、成本低、可以無線無源工作等優(yōu)點,因此非常適合高溫高壓、高速移動或旋轉(zhuǎn)、有毒有害等惡劣環(huán)境中進行傳感。隨著對航空航天、工業(yè)制造等領(lǐng)域的結(jié)構(gòu)健康監(jiān)控(Structure health monitor,SHM)的需求日益增多,能無源無線傳感的SAW傳感器有著廣泛的應用前景。因此展開在惡劣環(huán)境下進行溫度、應變等物理量進行傳感的SAW傳感器的研究有著十分重要的意義。本文采用了一種具有優(yōu)秀的高溫應變特性的新型壓電基底材料硅酸鎵鑭(Langasite,LGS)來制備SAW溫度應變傳感器。設(shè)計出的SAW傳感器為諧振器結(jié)構(gòu),叉指對數(shù)為100對,叉指寬度為2μm,金屬化比率為0.5,孔徑長度為100λ,其中叉指換能器(IDT)與反射柵(Reflector bank)之間的距離為6μm。并利用COMSOL Multiphsycs軟件對所設(shè)計的器件進行了仿真計算。本文選用的LGS基底的歐拉角為(0°,138.5°,26.6°),采用微電子工藝在基底材料上制作SAW諧振器。并對工藝參數(shù)進行了優(yōu)化,得到了性能優(yōu)異的SAW傳感器。本文對所制得的LGS聲表面波傳感器進行了溫度性能測試,溫度測試范圍為20℃~400℃。在不同溫度下LGS傳感器均保持了良好的SAW特性,其諧振頻率隨著溫度的升高而降低,經(jīng)過線性擬合,我們計算出了基于歐拉角為(0°,138.5°,26.6°)的LGS傳感器的其一階和二階溫度頻率系數(shù)的值分別為-4.229×10~(-4)和-2.034×10~(-5)。為了驗證LGS聲表面波傳感器的溫度重復性,我們對其進行了溫度循環(huán)測試,測試結(jié)果表明循環(huán)測試下傳感器的溫度重復性良好,其最大誤差為2.39%,滿足測試需求。本文還對20℃~250℃下LGS傳感器的應變特性進行了研究。通過懸臂梁結(jié)構(gòu)測試了LGS的頻率應變特性,測試表明LGS傳感器的諧振頻率隨著應變的增加呈線性降低,應變靈敏度為-162.94Hz/με,應變頻率系數(shù)為-0.488ppm/με。通過溫度應變測試可知,隨著溫度的升高,傳感器的應變靈敏度逐漸降低,到250℃時,靈敏度為-120.75Hz/με,應變頻率系數(shù)為-0.363 ppm/με。本文還研究了SAW傳播方向與應變方向夾角的關(guān)系。通過不同角度粘接傳感器的方式,改變傳感器的SAW傳播方向與應變的夾角,研究了其應變特性。粘接器件的角度分別為0°,30°,60°,90°,測試結(jié)果表明,SAW的傳播方向與應變方向的夾角發(fā)生改變時,傳感器諧振頻率對應變的響應也隨之發(fā)生改變,夾角為30°,60°,90°時,其諧振頻率會隨著應變的增加而增加,其靈敏度分別為179.17 Hz/με,325.09 Hz/με,162.48 Hz/με。頻率應變系數(shù)分別為0.536 ppm/με,0.973 ppm/με,0.486 ppm/με。另外還對這些傳感器進行了不同溫度下的應變測試,其靈敏度亦隨著溫度的上升而降低。最后,本論文對LGS傳感器進行了應變誤差分析.計算了傳感器的相對線性誤差,在全溫測量范圍內(nèi),相對誤差范圍為0.22%~1.68%,表明傳感器具有良好的線性度。為了研究應變滯后誤差,對傳感器進行了應變循環(huán)測試,測試結(jié)果顯示,在常溫下所有器件的應變之后誤差均在3%以內(nèi),隨著溫度的升高,應變滯后誤差開始升高,在10%以內(nèi)。
[Abstract]:Surface acoustic wave (SAW) devices have the advantages of small volume, high quality factor, fast response, low cost, and wireless passive work. Therefore, it is very suitable for sensing in high temperature and high pressure, high speed moving or rotating, toxic and harmful environment. The demand for Structure health monitor (SHM) is increasing, and the SAW sensor with passive wireless sensor has a wide application prospect. Therefore, it is of great significance to develop a SAW sensor for sensing the temperature, strain and other physical quantities in a bad environment. This paper uses an excellent high temperature strain characteristic. A new type of piezoelectric base material Langasite (LGS) is used to prepare the SAW temperature strain sensor. The designed SAW sensor is a resonator structure, the cross finger logarithm is 100 pairs, the cross finger width is 2 mu m, the metallization ratio is 0.5, the aperture length is 100 lambda, and the distance between the cross finger transducer (IDT) and the reflective gate (Reflector bank) is 6 micron. The COMSOL Multiphsycs software is used to simulate the designed devices. The Euler angle of the selected LGS substrate is (0, 138.5, 26.6). The microelectronic technology is used to make the SAW resonator on the base material. The process parameters are optimized and the SAW sensor with excellent performance is obtained. The LGS surface wave transmission is made in this paper. The temperature performance was tested at 20 ~400 C. The LGS sensor maintained good SAW characteristics at different temperatures, and its resonant frequency decreased with the increase of temperature. After linear fitting, we calculated the first and two order temperature frequencies of LGS sensors based on the Euler angle (0 degrees, 138.5 degrees, 26.6 degrees). The values of the coefficients are -4.229 * 10~ (-4) and -2.034 x 10~ (-5). In order to verify the temperature repeatability of the LGS surface acoustic wave sensor, we have tested the temperature cycle of the sensor. The test results show that the temperature repeatability of the sensor is good and the maximum error is 2.39% to meet the test requirements. The LGS sensor at 20 C ~250 is also tested in this paper. The strain characteristics of the LGS are tested by the cantilever beam structure. The test shows that the resonant frequency of the LGS sensor decreases linearly with the increase of strain, the strain sensitivity is -162.94Hz/ um, and the strain frequency coefficient is -0.488ppm/ um. The sensitivity is reduced gradually, at 250 C, the sensitivity is -120.75Hz/ um and the strain frequency coefficient is -0.363 ppm/ um. The relationship between the direction of the propagation of SAW and the angle of the strain direction is also studied. The strain characteristics of the sensor are studied by changing the angle between the direction of the propagation of SAW and the strain of the strain by means of different angle bonding sensors. The strain characteristics of the sensor are studied. The angles are 0 degrees, 30 degrees, 60 degrees, 90 degrees respectively. The results show that the response of the resonant frequency of the sensor to the strain is also changed when the angle of the propagation direction of SAW and the direction of strain changes. When the angle is 30, 60, 90 degrees, the resonant frequency will increase with the increase of strain, and the sensitivity is 179.17 Hz/, 325.09 Hz/, respectively. The frequency strain coefficient is 162.48 Hz/ um. The frequency strain coefficient is 0.536 ppm/ um, 0.973 ppm/ and 0.486 ppm/ respectively. In addition, the strain measurements at different temperatures are carried out on these sensors. The sensitivity is also reduced with the increase of temperature. Finally, the strain error analysis of the LGS sensor is carried out in this paper. The relative linear error of the sensor is calculated. In the range of total temperature measurement, the relative error range is 0.22%~1.68%, which indicates that the sensor has good linearity. In order to study strain lag error, the strain cycle test is carried out on the sensor. The test results show that the error of all the strain of all the devices is within 3% at normal temperature, and the strain lag error begins with the increase of temperature. Rise, within 10%.
【學位授予單位】:電子科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP212

【參考文獻】

相關(guān)期刊論文 前4條

1 陳光紅,于映,羅仲梓,吳清鑫;AZ5214E反轉(zhuǎn)光刻膠的性能研究及其在剝離工藝中的應用[J];功能材料;2005年03期

2 陳漢鴻,呂建國,葉志鎮(zhèn),汪雷,趙炳輝;反應磁控濺射ZnO薄膜的高溫退火研究[J];真空科學與技術(shù);2002年06期

3 程衛(wèi)東,董永貴,馮冠平;延遲線型無線SAW傳感器的訪問信號[J];清華大學學報(自然科學版);2001年11期

4 尹福炎;電阻應變計技術(shù)六十年(一) 電阻應變計的由來、發(fā)展及展望[J];傳感器世界;1998年08期

相關(guān)博士學位論文 前1條

1 李媛媛;聲表面波微力傳感器的研究[D];東華大學;2014年

相關(guān)碩士學位論文 前7條

1 陳高丁;基于硅酸鎵鑭的聲表面波高溫壓力傳感器研究[D];北京理工大學;2016年

2 趙麗琦;LGS與石英壓電傳感器性能對比研究[D];大連理工大學;2015年

3 鄧森洋;無源聲表面波傳感器的無線測試系統(tǒng)研究[D];電子科技大學;2015年

4 曾義紅;基于YCOB的高溫聲表面波傳感器的研究[D];電子科技大學;2015年

5 宋應兵;LGS低相噪溫度補償振蕩器的研究[D];電子科技大學;2015年

6 魏登勇;基于聲表面波諧振式無源無線壓力傳感器的研究[D];西南交通大學;2014年

7 王淵朝;基于LC諧振的無線無源溫度傳感器研究[D];電子科技大學;2014年

,

本文編號:2100692

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/2100692.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶1cbb2***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com