某過(guò)程控制實(shí)驗(yàn)裝置升級(jí)改造
本文選題:升級(jí)改造 + 組態(tài)王; 參考:《內(nèi)蒙古大學(xué)》2017年碩士論文
【摘要】:本課題來(lái)源于實(shí)驗(yàn)室的實(shí)驗(yàn)裝置,實(shí)驗(yàn)室購(gòu)買(mǎi)的實(shí)驗(yàn)裝置存在一些不足之處,為了更好的進(jìn)行實(shí)驗(yàn)教學(xué),提高學(xué)生的實(shí)踐能力,依據(jù)現(xiàn)有的實(shí)驗(yàn)資源,進(jìn)行改造。這次共改造了 5臺(tái)實(shí)驗(yàn)裝置。實(shí)驗(yàn)裝置有三種控制方式:直接數(shù)字控制系統(tǒng),PLC控制系統(tǒng)和集散控制系統(tǒng)(DDC,PCS,DCS),目前本科生教學(xué)選擇DDC控制方式來(lái)做實(shí)驗(yàn)。而裝置自帶的實(shí)驗(yàn)軟件沒(méi)有源代碼,學(xué)生無(wú)法看到程序以及控制實(shí)驗(yàn)的過(guò)程,只能按照軟件界面上的內(nèi)容操作實(shí)驗(yàn),降低了學(xué)生的動(dòng)手能力。實(shí)驗(yàn)裝置中調(diào)節(jié)閥實(shí)時(shí)開(kāi)度反饋值沒(méi)有采集到控制系統(tǒng),為了完善實(shí)驗(yàn)系統(tǒng),提高控制精度和可靠性,本次改造購(gòu)買(mǎi)了模擬量采集模塊,經(jīng)過(guò)布線、調(diào)試,以及部分PID實(shí)驗(yàn)改造前后性能對(duì)比,完成了本次實(shí)驗(yàn)設(shè)備改造。論文以實(shí)驗(yàn)裝置為主對(duì)象,從硬件、軟件、算法、測(cè)試、對(duì)比四方面入手,對(duì)實(shí)驗(yàn)裝置進(jìn)行改造。論文主要的研究?jī)?nèi)容如下:1.對(duì)某實(shí)驗(yàn)裝置進(jìn)行了詳細(xì)的研究,分析裝置的硬件組成部分、系統(tǒng)的總體結(jié)構(gòu)、系統(tǒng)檢測(cè)機(jī)構(gòu)、執(zhí)行機(jī)構(gòu)、輔助系統(tǒng)以及實(shí)驗(yàn)裝置控制系統(tǒng)。提出了實(shí)驗(yàn)裝置的改造方案。2.分析了改造前硬件的不足,研究了 DDC直接控制系統(tǒng)以及改造后的DDC系統(tǒng),然后對(duì)電動(dòng)調(diào)節(jié)閥進(jìn)行原理分析、布線以及調(diào)試,其次新加一個(gè)模擬量模塊,最后對(duì)改造后的模塊進(jìn)行了參數(shù)的設(shè)置以及調(diào)試。3.設(shè)計(jì)了組態(tài)界面和算法。首先分析了改造之前軟件的不足,其次設(shè)計(jì)了組態(tài)實(shí)驗(yàn)界面以及PID控制器,接著設(shè)計(jì)了 PID算法以及單容水箱液位PID算法的設(shè)計(jì),緊接著設(shè)計(jì)了串級(jí)PID算法,然后對(duì)PID整定方法進(jìn)行了對(duì)比,選擇了適合本實(shí)驗(yàn)系統(tǒng)的整定方法以及整定步驟。最后設(shè)計(jì)了加入電動(dòng)調(diào)節(jié)閥實(shí)際開(kāi)度值后的算法。4.首先對(duì)的組態(tài)實(shí)驗(yàn)界面進(jìn)行通訊測(cè)試,接著對(duì)調(diào)節(jié)閥控制輸出與實(shí)際開(kāi)度反饋值的跟蹤情況分析,緊接著對(duì)加入微調(diào)的PID實(shí)驗(yàn)的6種情況進(jìn)行了多組測(cè)試,然后進(jìn)行了雙容PID的實(shí)驗(yàn)測(cè)試及驗(yàn)證,主要對(duì)5個(gè)性能指標(biāo)進(jìn)行了實(shí)驗(yàn)驗(yàn)證。最后對(duì)串級(jí)PID進(jìn)行了測(cè)試以及驗(yàn)證。通過(guò)加入微調(diào)的PID和未加入微調(diào)的PID進(jìn)行實(shí)驗(yàn)對(duì)比。
[Abstract]:This topic comes from the laboratory experimental device, the laboratory purchased experimental device has some shortcomings, in order to better carry out experimental teaching, improve students' practical ability, according to the existing experimental resources, reform. A total of five experimental devices were modified this time. There are three kinds of control methods in the experimental device: direct digital control system and distributed control system. At present, undergraduate students choose DDC control mode to do the experiment. But the experimental software has no source code, students can not see the program and control the process of the experiment, they can only operate the experiment according to the contents of the software interface, which reduces the students' practical ability. In order to improve the experimental system and improve the control accuracy and reliability, the analog sampling module was purchased in the experiment device, which was wired and debugged, in order to improve the experimental system and improve the accuracy and reliability of the control system. And part of the PID experiment before and after the performance comparison, completed this experiment equipment transformation. In this paper, the experimental device is reformed from four aspects: hardware, software, algorithm, test and contrast. The main contents of this paper are as follows: 1. The hardware components of the device, the overall structure of the system, the system detection mechanism, the executive mechanism, the auxiliary system and the control system of the experimental device are analyzed in detail. The modification scheme of the experimental device is put forward. The shortage of hardware before revamping is analyzed, the DDC direct control system and the modified DDC system are studied, then the principle analysis, wiring and debugging of the electric regulating valve are carried out, and a new analog module is added. Finally, the parameter setting and debugging. 3. Configuration interface and algorithm are designed. At first, the deficiency of the software is analyzed, then the configuration experiment interface and PID controller are designed, then the PID algorithm and the single tank level PID algorithm are designed, and then the cascade PID algorithm is designed. Then, the PID tuning method is compared, and the tuning method and the tuning steps are selected. Finally, the algorithm of adding the actual opening value of electric regulating valve is designed. 4. First of all, the communication test of the configuration experiment interface is carried out, and then the tracking analysis of the control output of the control valve and the actual opening feedback value is analyzed, and then the six kinds of PID experiment with fine tuning are tested in several groups. Then the double-volume PID was tested and verified, and five performance indexes were tested. Finally, the cascade PID is tested and verified. The experimental results were compared by adding fine-tuned PID and PID without fine-tuning.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫歡歡;莫岳平;馬瑞;錢(qián)坤;;基于組態(tài)王的水箱液位PID控制設(shè)計(jì)[J];工業(yè)儀表與自動(dòng)化裝置;2016年04期
2 黃愛(ài)元;邵根富;黃國(guó)輝;;三容水箱液位控制系統(tǒng)建模與仿真[J];實(shí)驗(yàn)室研究與探索;2016年01期
3 趙越嶺;王俊生;;“過(guò)程控制系統(tǒng)”課程實(shí)驗(yàn)平臺(tái)設(shè)計(jì)[J];遼寧工業(yè)大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2014年04期
4 張倩;李海港;;基于C/S結(jié)構(gòu)的網(wǎng)絡(luò)型過(guò)程控制實(shí)驗(yàn)系統(tǒng)開(kāi)發(fā)[J];實(shí)驗(yàn)室研究與探索;2013年03期
5 陳在平;苗家森;孫全勝;倪建云;賈超;;基于組態(tài)王的加熱爐監(jiān)控系統(tǒng)[J];化工自動(dòng)化及儀表;2012年09期
6 吳興純;楊燕云;吳瑞武;楊秀蓮;;基于參數(shù)自整定的雙容液位模糊控制系統(tǒng)設(shè)計(jì)[J];自動(dòng)化與儀器儀表;2011年04期
7 馬應(yīng)魁;鄒益民;;CS3000DCS在過(guò)程控制實(shí)驗(yàn)裝置中的應(yīng)用[J];自動(dòng)化與儀器儀表;2011年01期
8 令朝霞;;基于遠(yuǎn)程數(shù)據(jù)采集的計(jì)算機(jī)流量比值控制系統(tǒng)的設(shè)計(jì)[J];工業(yè)控制計(jì)算機(jī);2009年08期
9 李芹;肖思名;;基于VB 6.0的雙容水箱液位串級(jí)控制系統(tǒng)設(shè)計(jì)[J];上海電力學(xué)院學(xué)報(bào);2009年04期
10 曹立學(xué);;基于智能采集模塊的DDC系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J];自動(dòng)化技術(shù)與應(yīng)用;2008年06期
相關(guān)碩士學(xué)位論文 前10條
1 孫雷;基于參數(shù)自整定的模糊PID控制在多容水箱系統(tǒng)中的應(yīng)用[D];哈爾濱理工大學(xué);2015年
2 李明星;基于MCGS液位控制系統(tǒng)研究[D];安徽理工大學(xué);2014年
3 胡晨;基于CS4000平臺(tái)的遠(yuǎn)程實(shí)驗(yàn)系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)[D];南京理工大學(xué);2014年
4 章鉛飛;復(fù)雜過(guò)程控制系統(tǒng)設(shè)計(jì)及控制策略的研究[D];南京理工大學(xué);2012年
5 劉光磊;基于LabVIEW的水箱液位實(shí)驗(yàn)裝置遠(yuǎn)程控制系統(tǒng)的開(kāi)發(fā)與應(yīng)用[D];中南大學(xué);2011年
6 高明坤;雙容水箱控制系統(tǒng)的研究[D];東北大學(xué);2011年
7 李剛;基于組態(tài)王的雙容水箱模糊控制[D];中南大學(xué);2010年
8 尹一鳴;基于LabVIEW的過(guò)程控制實(shí)驗(yàn)平臺(tái)的設(shè)計(jì)[D];合肥工業(yè)大學(xué);2010年
9 葛薇;智能PID的研究及其在液位控制中的應(yīng)用[D];安徽農(nóng)業(yè)大學(xué);2008年
10 樊國(guó)平;智能PID控制系統(tǒng)的設(shè)計(jì)與研究[D];浙江工業(yè)大學(xué);2005年
,本文編號(hào):1866543
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1866543.html