不確定遺傳神經(jīng)網(wǎng)絡(luò)在滑坡危險性預(yù)測中的研究與應(yīng)用
發(fā)布時間:2018-05-09 15:23
本文選題:不確定數(shù)據(jù) + 滑坡。 參考:《計算機工程》2017年02期
【摘要】:針對滑坡危險性預(yù)測中降雨等不確定因素難以獲取,以及有效處理和標(biāo)準(zhǔn)反向傳播算法存在局部極小值和訓(xùn)練速度慢等問題,為提高滑坡危險性的預(yù)測精度,提出一種不確定遺傳神經(jīng)網(wǎng)絡(luò)滑坡預(yù)測方法。基于改進遺傳算法和反向傳播神經(jīng)網(wǎng)絡(luò)分類算法,結(jié)合滑坡災(zāi)害預(yù)測相關(guān)理論,考慮到與滑坡災(zāi)害密切相關(guān)的降雨等不確定因素,給出不確定數(shù)據(jù)分離度的概念,闡述不確定屬性數(shù)據(jù)的處理方法,構(gòu)建不確定遺傳神經(jīng)網(wǎng)絡(luò),建立滑坡災(zāi)害預(yù)測模型,以延安寶塔區(qū)為例進行驗證。實驗結(jié)果顯示,該方法的有效精度和總體精度分別為92.1%和86.7%,驗證了不確定遺傳神經(jīng)網(wǎng)絡(luò)算法在滑坡災(zāi)害預(yù)測中的可行性。
[Abstract]:In order to improve the prediction accuracy of landslide risk, it is difficult to obtain uncertain factors such as rainfall in landslide risk prediction, and there are some problems in effective treatment and standard back-propagation algorithm, such as local minimum value and slow training speed. An uncertain genetic neural network landslide prediction method is proposed. Based on improved genetic algorithm and back-propagation neural network classification algorithm, combined with the related theory of landslide disaster prediction, considering the uncertain factors such as rainfall closely related to landslide disaster, the concept of uncertain data separation degree is given. The processing method of uncertain attribute data is expounded, the uncertain genetic neural network is constructed, and the landslide disaster prediction model is established, which is verified by taking Baota area, Yan'an as an example. The experimental results show that the effective accuracy and overall accuracy of the method are 92.1% and 86.7% respectively. The feasibility of the uncertain genetic neural network algorithm in landslide disaster prediction is verified.
【作者單位】: 江西理工大學(xué)信息工程學(xué)院;江西理工大學(xué)資源與環(huán)境工程學(xué)院;江西理工大學(xué)應(yīng)用科學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金“基于不確定數(shù)據(jù)挖掘的滑坡區(qū)域地質(zhì)災(zāi)害危險性評價方法”(41362015)
【分類號】:P642.22;TP18
【參考文獻】
相關(guān)期刊論文 前10條
1 盧建中;程浩;;改進GA優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的短時交通流預(yù)測[J];合肥工業(yè)大學(xué)學(xué)報(自然科學(xué)版);2015年01期
2 毛伊敏;彭U,
本文編號:1866539
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1866539.html
最近更新
教材專著