被動(dòng)式電液伺服加載系統(tǒng)的反步自適應(yīng)控制研究
本文選題:被動(dòng)式電液伺服加載系統(tǒng) 切入點(diǎn):多余力矩 出處:《河南科技大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:被動(dòng)式電液伺服加載系統(tǒng)又稱電液負(fù)載模擬器,其中的典型應(yīng)用是在地面實(shí)驗(yàn)室條件下,模擬飛行器舵面所受的空氣動(dòng)力載荷,以此檢測舵機(jī)的技術(shù)性能指標(biāo),是飛控半物理仿真的主要設(shè)備之一。該模擬系統(tǒng)主要由加載系統(tǒng)和承載系統(tǒng)兩部分組成,兩個(gè)系統(tǒng)通過剛性軸進(jìn)行連接,分別跟蹤各自指令信號,利用角位移傳感器和扭矩傳感器測量信號實(shí)現(xiàn)閉環(huán)控制。在工作中由于加載系統(tǒng)受承載系統(tǒng)的強(qiáng)位置干擾會產(chǎn)生較大的多余力矩,又由于該系統(tǒng)中電液伺服閥輸出控制流量的非線性特性和系統(tǒng)參數(shù)的時(shí)變性,所以很難對其進(jìn)行高性能的控制。因此,本文深入開展了被動(dòng)式電液伺服加載系統(tǒng)的理論和實(shí)驗(yàn)研究,以期形成高精度的力矩控制策略,為電液伺服加載控制提供了一定的理論支持和技術(shù)手段。首先,通過查閱近年來國內(nèi)外文獻(xiàn)論述了被動(dòng)式電液伺服加載系統(tǒng)的主要技術(shù)指標(biāo)、主要技術(shù)問題、研究現(xiàn)狀及面臨的挑戰(zhàn),最終確定本文采用控制補(bǔ)償方法來提高系統(tǒng)的加載性能。其次,介紹了本文所研究的被動(dòng)式電液伺服加載系統(tǒng)的結(jié)構(gòu)形式,并基于此,在忽略其次要因素影響的前提下,建立了被動(dòng)式電液伺服加載系統(tǒng)的非線性數(shù)學(xué)模型,基于系統(tǒng)的非線性數(shù)學(xué)模型推導(dǎo)出該系統(tǒng)的非線性系統(tǒng)方程;并對系統(tǒng)中多余力矩的產(chǎn)生機(jī)理及影響因素進(jìn)行了相關(guān)分析。再次,針對被動(dòng)式電液伺服加載系統(tǒng)的力矩控制問題,從非線性控制理論出發(fā),將反步自適應(yīng)控制方法與滑?刂撇呗韵嘟Y(jié)合,設(shè)計(jì)了自適應(yīng)反步滑?刂破,并運(yùn)用Lyapunov穩(wěn)定性定理對控制器的穩(wěn)定性進(jìn)行了證明;運(yùn)用MATLAB仿真軟件平臺,搭建該控制器的Simulink模型,通過仿真比較各種控制方法的控制效果,證明了本文所提出的控制策略能夠有效地抑制多余力矩,并且對參數(shù)攝動(dòng)及外界擾動(dòng)均具有較強(qiáng)的魯棒性。最后,搭建了被動(dòng)式電液伺服加載系統(tǒng)模擬實(shí)驗(yàn)臺,運(yùn)用該實(shí)驗(yàn)平臺開展了被動(dòng)式電液伺服加載系統(tǒng)自適應(yīng)反步滑?刂品椒ǖ南嚓P(guān)實(shí)驗(yàn)研究,驗(yàn)證了本文所提出控制方法的有效性。
[Abstract]:The passive electro-hydraulic servo loading system is also called the electro-hydraulic load simulator. The typical application is to simulate the aerodynamic load on the rudder surface of the aircraft under the condition of the ground laboratory, so as to detect the technical performance index of the steering gear. The simulation system is composed of two parts: loading system and carrying system. The two systems are connected by rigid axis to track their command signals respectively. The closed loop control is realized by using angular displacement sensor and torque sensor measurement signal. Because of the nonlinear characteristics of the output control flow of the electro-hydraulic servo valve and the time-varying of the system parameters, it is difficult to control it with high performance. In this paper, the theoretical and experimental research of the passive electro-hydraulic servo loading system is carried out in order to form a high-precision torque control strategy, which provides a certain theoretical support and technical means for the electro-hydraulic servo loading control. This paper discusses the main technical indexes, main technical problems, research status and challenges of passive electro-hydraulic servo loading system by consulting domestic and foreign literatures in recent years. Finally, it is determined that the control compensation method is used to improve the loading performance of the system. Secondly, the structure of the passive electro-hydraulic servo loading system studied in this paper is introduced, and based on this, the influence of secondary factors is ignored. The nonlinear mathematical model of the passive electro-hydraulic servo loading system is established, and the nonlinear system equation is derived based on the nonlinear mathematical model of the system. The mechanism of excess torque in the system and its influencing factors are analyzed. Thirdly, aiming at the torque control problem of passive electro-hydraulic servo loading system, the nonlinear control theory is introduced. Combining the backstepping adaptive control method with sliding mode control strategy, the adaptive backstepping sliding mode controller is designed, and the stability of the controller is proved by using the Lyapunov stability theorem. The Simulink model of the controller is built, and the control effect of various control methods is compared by simulation. It is proved that the control strategy proposed in this paper can effectively suppress the excess torque. And it has strong robustness to parameter perturbation and external disturbance. Finally, a passive electro-hydraulic servo loading system simulation test bench is built. The experimental research on adaptive backstepping sliding mode control method for passive electro-hydraulic servo loading system is carried out on this experimental platform, which verifies the effectiveness of the proposed control method.
【學(xué)位授予單位】:河南科技大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP273;TH137
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 歐陽小平;李鋒;朱瑩;楊上保;楊華勇;;重載航空負(fù)載模擬器非線性最優(yōu)前饋補(bǔ)償控制[J];航空學(xué)報(bào);2016年02期
2 唐文秀;梁小偉;賈鶴鳴;;連續(xù)平壓機(jī)伺服位置系統(tǒng)自適應(yīng)滑模反步控制[J];自動(dòng)化與儀表;2015年03期
3 李雪冰;馬莉;丁世宏;;一類新的二階滑?刂品椒捌湓诘沽[控制中的應(yīng)用[J];自動(dòng)化學(xué)報(bào);2015年01期
4 Wang Chengwen;Jiao Zongxia;Wu Shuai;Shang Yaoxing;;A practical nonlinear robust control approach of electro-hydraulic load simulator[J];Chinese Journal of Aeronautics;2014年03期
5 韓松杉;焦宗夏;尚耀星;汪成文;;基于舵機(jī)指令前饋的電液負(fù)載模擬器同步控制[J];北京航空航天大學(xué)學(xué)報(bào);2015年01期
6 方一鳴;石勝利;李建雄;李葉紅;;基于指令濾波的電液伺服系統(tǒng)自適應(yīng)反步控制[J];電機(jī)與控制學(xué)報(bào);2013年09期
7 付培華;陳振;叢炳龍;趙靜;;基于反步自適應(yīng)滑模控制的永磁同步電機(jī)位置伺服系統(tǒng)[J];電工技術(shù)學(xué)報(bào);2013年09期
8 郭棟;付永領(lǐng);盧寧;龍滿林;;自抗擾控制技術(shù)在電液力伺服系統(tǒng)中的應(yīng)用[J];北京航空航天大學(xué)學(xué)報(bào);2013年01期
9 邵彭真;方一鳴;王文賓;焦宗夏;;軋機(jī)液壓伺服系統(tǒng)多模型切換自適應(yīng)反步控制[J];北京科技大學(xué)學(xué)報(bào);2012年11期
10 ;Nonlinear Adaptive Robust Force Control of Hydraulic Load Simulator[J];Chinese Journal of Aeronautics;2012年05期
相關(guān)博士學(xué)位論文 前5條
1 楊潔;高階滑?刂评碚摷捌湓谇夫(qū)動(dòng)系統(tǒng)中的應(yīng)用研究[D];北京理工大學(xué);2015年
2 王一光;滑模變結(jié)構(gòu)控制在掃描光刻系統(tǒng)中的應(yīng)用研究[D];哈爾濱工業(yè)大學(xué);2015年
3 齊亮;基于滑模變結(jié)構(gòu)方法的永磁同步電機(jī)控制問題研究及應(yīng)用[D];華東理工大學(xué);2013年
4 張彪;電液負(fù)載模擬器多余力矩抑制及其反步自適應(yīng)控制研究[D];哈爾濱工業(yè)大學(xué);2009年
5 吳玉香;滑模控制理論及在移動(dòng)機(jī)械臂中的應(yīng)用[D];華南理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前2條
1 張培;新型電液負(fù)載模擬器摩擦及控制特性研究[D];哈爾濱工業(yè)大學(xué);2015年
2 韓衛(wèi)沙;模糊滑?刂频难芯考捌湓谄嚢胫鲃(dòng)懸架上的應(yīng)用[D];河北工程大學(xué);2011年
,本文編號:1640912
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1640912.html