可重構(gòu)機(jī)器人操作柔性負(fù)載建模及振動(dòng)抑制研究
發(fā)布時(shí)間:2018-03-06 09:15
本文選題:可重構(gòu)機(jī)器人 切入點(diǎn):柔性負(fù)載 出處:《天津理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:在現(xiàn)代制造業(yè)中,機(jī)器人技術(shù)的使用變得非常廣泛,并且對(duì)制造業(yè)自動(dòng)化程度的要求也越來(lái)越高,因此對(duì)機(jī)器人的工作方式及適應(yīng)能力有更高的要求。傳統(tǒng)機(jī)器人是基于某一相同或相近的任務(wù)而設(shè)計(jì)的且構(gòu)型固定的機(jī)器人,靈活性較差。為了改善傳統(tǒng)機(jī)器人的弊端,可重構(gòu)機(jī)器人進(jìn)而產(chǎn)生和發(fā)展。在汽車(chē)制造業(yè)和航空航天等領(lǐng)域內(nèi),一些柔性的輕薄板件或者細(xì)長(zhǎng)桿件需要由機(jī)器人來(lái)完成抓取、夾持定位及裝配。在機(jī)器人運(yùn)動(dòng)過(guò)程中由于慣性和自重等的原因,柔性負(fù)載不可避免的會(huì)產(chǎn)生振動(dòng),降低了機(jī)器人操作負(fù)載的末端定位精度。由可重構(gòu)機(jī)器人結(jié)構(gòu)參數(shù)等引起的靜態(tài)誤差和運(yùn)動(dòng)過(guò)程中各連桿慣性等作用下的動(dòng)態(tài)誤差均會(huì)對(duì)機(jī)器人末端精度造成影響。影響可重構(gòu)機(jī)器人末端位姿精度的靜態(tài)誤差是指由于各模塊在制造及重構(gòu)裝配過(guò)程中產(chǎn)生的幾何偏差;由于可重構(gòu)機(jī)器人的各關(guān)節(jié)和連桿不是完全的剛性體,動(dòng)態(tài)誤差是指在其運(yùn)動(dòng)過(guò)程中由于慣性及重力等作用下,機(jī)器人各連桿會(huì)產(chǎn)生一定的柔性變形,從而引起機(jī)器人末端位姿的偏差。因此,本文分析了靜態(tài)和動(dòng)態(tài)誤差對(duì)機(jī)器人末端位置的影響。為了研究可重構(gòu)機(jī)器人操作柔性負(fù)載的振動(dòng),本文首先利用拉格朗日方程建立機(jī)器人動(dòng)力學(xué)模型,而后結(jié)合變形旋量和有限元法分析了柔性負(fù)載的變形,得到了柔性負(fù)載上任一點(diǎn)相對(duì)固定坐標(biāo)系的位姿關(guān)系,再基于拉格朗日建立柔性負(fù)載的動(dòng)力學(xué)方程;最后通過(guò)機(jī)器人與柔性負(fù)載之間的作用關(guān)系,建立系統(tǒng)的動(dòng)力學(xué)模型。針對(duì)機(jī)器人在操作柔性負(fù)載運(yùn)動(dòng)過(guò)程中的振動(dòng)問(wèn)題,本文使用了基于基函數(shù)疊加與粒子群優(yōu)化相結(jié)合的振動(dòng)抑制規(guī)劃方法,使用基函數(shù)疊加規(guī)劃關(guān)節(jié)角速度,將疊加函數(shù)的參數(shù)作為待優(yōu)化參數(shù),通過(guò)機(jī)器人操作柔性負(fù)載系統(tǒng)動(dòng)力學(xué)模型確定模態(tài)坐標(biāo)與關(guān)節(jié)運(yùn)動(dòng)之間的關(guān)系以及模態(tài)坐標(biāo)與末端變形的關(guān)系,從而將振動(dòng)抑制問(wèn)題轉(zhuǎn)換為關(guān)節(jié)角速度參數(shù)優(yōu)化問(wèn)題,并利用粒子群算法完成整個(gè)優(yōu)化過(guò)程。
[Abstract]:In the modern manufacturing industry, the use of robot technology has become very widespread, and the degree of automation of manufacturing industry is becoming more and more demanding. Therefore, there are higher demands on the working mode and adaptability of the robot. The traditional robot is designed based on the same or similar task and has a fixed configuration, which is not flexible. In order to improve the disadvantages of the traditional robot, In the fields of automobile manufacturing, aerospace, and so on, some flexible thin and thin panels or slender rods need to be grabbed by the robot. Clamping positioning and assembly. Due to inertia and deadweight during robot movement, flexible load will inevitably produce vibration. The static error caused by the structural parameters of the reconfigurable robot and the dynamic error caused by the inertia of each connecting rod in the course of movement will all have an effect on the terminal accuracy of the robot. The static error that affects the precision of the reconfigurable robot end position and pose refers to the geometric deviation caused by each module in the process of manufacturing and reconstructing assembly. Since the joints and connecting rods of the reconfigurable robot are not completely rigid bodies, the dynamic error is that due to the action of inertia and gravity, each linkage of the reconfigurable robot will produce certain flexible deformation. Therefore, the effect of static and dynamic errors on the end position of the robot is analyzed. In order to study the vibration of the flexible load of the reconfigurable robot, In this paper, the dynamic model of the robot is established by Lagrangian equation, then the deformation of the flexible load is analyzed by combining the deformation spinor and the finite element method, and the position and pose relation of any point on the flexible load in a relative fixed coordinate system is obtained. Then the dynamic equation of flexible load is established based on Lagrange. Finally, the dynamic model of the system is established through the relationship between the robot and the flexible load. In this paper, the vibration suppression programming method based on the combination of basis function superposition and particle swarm optimization is used. The parameters of the superposition function are taken as the parameters to be optimized by using the basis function superposition to plan the joint angular velocity. The relationship between modal coordinates and joint motion and the relationship between modal coordinates and terminal deformation are determined by the dynamic model of robot operating flexible load system, and the problem of vibration suppression is transformed into the optimization problem of joint angular velocity parameters. Particle swarm optimization algorithm is used to complete the whole optimization process.
【學(xué)位授予單位】:天津理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 宗光華;畢樹(shù)生;王巍;李大寨;;機(jī)器人技術(shù)開(kāi)拓未來(lái)——2005年國(guó)際機(jī)器人展(日本)巡禮[J];機(jī)器人技術(shù)與應(yīng)用;2006年01期
2 陳林;奚如如;王興松;;套索驅(qū)動(dòng)細(xì)長(zhǎng)機(jī)器人的初步設(shè)計(jì)與試驗(yàn)[J];機(jī)電工程;2011年03期
3 謝芝馨;;蘇聯(lián)機(jī)器人技術(shù)述評(píng)[J];機(jī)械與電子;1989年04期
4 羅飛,,余達(dá)太;主動(dòng)式控制──機(jī)器人抑振控制的有效方式[J];機(jī)器人;1995年04期
5 盧桂章;當(dāng)前高技術(shù)發(fā)展的前沿——機(jī)器人技術(shù)[J];天津科技;1995年01期
6 蘇陸;日本機(jī)器人技術(shù)與產(chǎn)品[J];全球科技經(jīng)濟(jì)w
本文編號(hào):1574220
本文鏈接:http://sikaile.net/kejilunwen/zidonghuakongzhilunwen/1574220.html
最近更新
教材專(zhuān)著