變區(qū)域上p-Laplacian型復(fù)Ginzburg-Landau方程的拉回吸引子(英文)
發(fā)布時間:2021-04-14 03:12
考慮具有p-Laplacian的復(fù)Ginzburg-Landau方程?Tu-(λ+iα)Δpu+(κ+iβ)|u|q-2u-γu=f(t)在變區(qū)域上的動力學(xué)行為問題,其中q≥2滿足條件■.在空間區(qū)域有界且變化滿足單調(diào)性條件下,證明了滿足能量等式變分解的存在唯一性.進一步,建立了由此類弱解形成的非自治系統(tǒng)的D-拉回吸引子.
【文章來源】:曲阜師范大學(xué)學(xué)報(自然科學(xué)版). 2020,46(04)
【文章頁數(shù)】:9 頁
【文章目錄】:
0 Introduction
1 Preliminaries
1.1 Functional spaces and preliminary lemmas
1.2 The uniqueness of variational solution
2 Variational solutions
2.1 Penalty method
2.2 Penalty equation
2.3 Existence and uniqueness of variational solutions
3 Pullback dynamics
3.1 Basic definitions and preliminaries
3.2 Process S(·,·) generated by the weak solutions
3.3 Dλ-pullback absorbing set
3.4 Dλ-pullback attractor
4 Conclusion
本文編號:3136541
【文章來源】:曲阜師范大學(xué)學(xué)報(自然科學(xué)版). 2020,46(04)
【文章頁數(shù)】:9 頁
【文章目錄】:
0 Introduction
1 Preliminaries
1.1 Functional spaces and preliminary lemmas
1.2 The uniqueness of variational solution
2 Variational solutions
2.1 Penalty method
2.2 Penalty equation
2.3 Existence and uniqueness of variational solutions
3 Pullback dynamics
3.1 Basic definitions and preliminaries
3.2 Process S(·,·) generated by the weak solutions
3.3 Dλ-pullback absorbing set
3.4 Dλ-pullback attractor
4 Conclusion
本文編號:3136541
本文鏈接:http://sikaile.net/kejilunwen/yysx/3136541.html
最近更新
教材專著