磁流體力學方程組和chemotaxis-Navier-Stokes方程組的漸近極限
發(fā)布時間:2020-11-19 12:52
在流體力學數(shù)學理論的研究中,對于流體力學模型的漸進機制的分析一直是非常重要的研究課題。漸進機制的研究有助于我們去理解一些物理現(xiàn)象。比如,對無粘極限及其收斂速率的研究有助于我們去認識流體中的湍流現(xiàn)象。在本博士論文中,我們主要研究了:a):不可壓縮磁流體力學方程組的零粘性與磁擴散極限;b):chemotaxis-Navier-Stokes方程組的粘性消失極限。在第1章中,我們主要介紹不可壓縮磁流體力學方程組與chemotaxis-Navier-Stokes方程組的物理背景及研究進展。在第2章中,我們研究了周期區(qū)域上的齊次不可壓磁流體力學方程組在Gevrey類中的局部適定性,零粘性與磁擴散極限。我們得到了解在Gevrey類中的收斂速率。在第3章中,我們研究了有界區(qū)域上的當速度場與磁場同時滿足Navier邊界條件時非齊次不可壓磁流體力學方程組的弱解的整體存在性,零粘性與磁擴散極限。我們也得到了解在L2空間內的收斂速率。在第4章中,我們研究了有界區(qū)域上的當速度場與磁場同時滿足Navier邊界條件且粘性系數(shù)與磁擴散系數(shù)相等時齊次不可壓磁流體力學方程組在加權Sobolev空間中的局部適定性及粘性消失極限。進而,我們得到了解在L2與H1空間中的收斂速率。在第5章中,我們研究了有界區(qū)域上的chemotaxis-Navier-Stokes方程組在加權Sobol-ev 空間中的局部適定性及粘性消失極限,其中速度場滿足 Navier 邊界條件,微生物密度及化學物質密度滿足齊次的Neumann邊界條件。我們得出了速度場在L2空間中的收斂性及微生物密度函數(shù)與化學物質密度函數(shù)在H1空間中的收斂性。
【學位單位】:南京大學
【學位級別】:博士
【學位年份】:2018
【中圖分類】:O175
【文章目錄】:
中文摘要
Abstract
Chapter 1 Introduction
1.1 Background and some known results on the 3D incompressible MHD equations
1.2 Background and some known results on the chemotaxis-Navier-Stokes equations
Chapter 2 Zero viscosity-magnetic diffusion limit of the viscous homoge-neous incompressible MHD equations in Gevrey class
2.1 Introduction
2.2 Preliminaries
2.3 Uniform regularity of the solutions
2.4 Zero viscosity-magnetic diffusion limit
2.5 Appendix
Chapter 3 Zero viscosity-magnetic diffusion limit of the viscous nonhomo-geneous incompressible MHD equations with Navier boundary conditions
3.1 Introduction
3.2 The existence of the global weak solutions
3.3 Zero viscosity-magnetic diffusion limit
Chapter 4 Uniform regularity and zero viscosity-magnetic diffusion limit forthe viscous homogeneous incompressible MHD equations in a 3D boundeddomain
4.1 Introduction
4.2 Preliminaries
4.3 A priori estimates and the proof of Theorem 4.1.1
4.3.1 Conormal energy estimates
4.3.2 Normal derivative estimates
4.3.3 Pressure estimates
∞ estimates'> 4.3.4 L∞ estimates
4.3.5 Proof of Theorem 4.3.1
4.3.6 Proof of Theorem 4.1.1
4.4 Proof of Theorem 4.1.2
Chapter 5 Uniform regularity and vanishing viscosity limit for thechemotaxis-Navier-Stokes system in a 3D bounded domain
5.1 Introduction
5.2 Preliminaries
5.3 A priori estimates and the proof of Theorem 5.1.1
5.3.1 Conormal energy estimates for (n, c,u)
n and ▽c'> 5.3.2 Conormal energy estimates for ▽n and ▽c
5.3.3 Conormal energy estimates for △n and △c
5.3.4 Normal derivative estimates for u
5.3.5 Pressure estimates
∞ estimates'> 5.3.6 L∞ estimates
5.3.7 Proof of Theorem 5.3.1
5.3.8 Proof of Theorem 5.1.1
5.4 The proof of Theorem 5.1.2
Bibliography
致謝
論文情況
【參考文獻】
本文編號:2890034
【學位單位】:南京大學
【學位級別】:博士
【學位年份】:2018
【中圖分類】:O175
【文章目錄】:
中文摘要
Abstract
Chapter 1 Introduction
1.1 Background and some known results on the 3D incompressible MHD equations
1.2 Background and some known results on the chemotaxis-Navier-Stokes equations
Chapter 2 Zero viscosity-magnetic diffusion limit of the viscous homoge-neous incompressible MHD equations in Gevrey class
2.1 Introduction
2.2 Preliminaries
2.3 Uniform regularity of the solutions
2.4 Zero viscosity-magnetic diffusion limit
2.5 Appendix
Chapter 3 Zero viscosity-magnetic diffusion limit of the viscous nonhomo-geneous incompressible MHD equations with Navier boundary conditions
3.1 Introduction
3.2 The existence of the global weak solutions
3.3 Zero viscosity-magnetic diffusion limit
Chapter 4 Uniform regularity and zero viscosity-magnetic diffusion limit forthe viscous homogeneous incompressible MHD equations in a 3D boundeddomain
4.1 Introduction
4.2 Preliminaries
4.3 A priori estimates and the proof of Theorem 4.1.1
4.3.1 Conormal energy estimates
4.3.2 Normal derivative estimates
4.3.3 Pressure estimates
∞ estimates'> 4.3.4 L∞ estimates
4.3.5 Proof of Theorem 4.3.1
4.3.6 Proof of Theorem 4.1.1
4.4 Proof of Theorem 4.1.2
Chapter 5 Uniform regularity and vanishing viscosity limit for thechemotaxis-Navier-Stokes system in a 3D bounded domain
5.1 Introduction
5.2 Preliminaries
5.3 A priori estimates and the proof of Theorem 5.1.1
5.3.1 Conormal energy estimates for (n, c,u)
n and ▽c'> 5.3.2 Conormal energy estimates for ▽n and ▽c
5.3.5 Pressure estimates
∞ estimates'> 5.3.6 L∞ estimates
5.3.7 Proof of Theorem 5.3.1
5.3.8 Proof of Theorem 5.1.1
5.4 The proof of Theorem 5.1.2
Bibliography
致謝
論文情況
【參考文獻】
相關期刊論文 前1條
1 張劍文;;THE INVISCID AND NON-RESISTIVE LIMIT IN THE CAUCHY PROBLEM FOR 3-D NONHOMOGENEOUS INCOMPRESSIBLE MAGNETO-HYDRODYNAMICS[J];Acta Mathematica Scientia;2011年03期
本文編號:2890034
本文鏈接:http://sikaile.net/kejilunwen/yysx/2890034.html
最近更新
教材專著