統(tǒng)計(jì)過(guò)程中的基于增強(qiáng)魯棒輔助信息的記憶型控制圖
發(fā)布時(shí)間:2020-11-08 10:10
統(tǒng)計(jì)過(guò)程控制(SPC)是一系列通過(guò)統(tǒng)計(jì)分析來(lái)監(jiān)控制造和非制造過(guò)程的方法。過(guò)程控制是用來(lái)提高產(chǎn)品和服務(wù)質(zhì)量的連續(xù)的過(guò)程。波動(dòng)是一個(gè)過(guò)程的重要部分,并且為了提高過(guò)程的質(zhì)量,我們不能忽視這些波動(dòng)。所有生產(chǎn)過(guò)程都會(huì)受波動(dòng)的影響。這些波動(dòng)可以分為兩類:普遍原因引起的波動(dòng)和特殊原因引起的波動(dòng)。及時(shí)監(jiān)測(cè)由特殊原因引起的波動(dòng)對(duì)任何過(guò)程的執(zhí)行都有重要作用。在檢查產(chǎn)品是否符合他們所設(shè)計(jì)的要求時(shí),控制圖特別有用。控制圖是最重要和常用的工具,用于識(shí)別由特殊原因引起的波動(dòng)。通過(guò)使用控制圖消除這些變化,可以控制和改進(jìn)對(duì)任何制造,生產(chǎn)或工業(yè)過(guò)程的監(jiān)控。Shewhart型控制圖可以有效地控制或檢測(cè)過(guò)程中的大量由特殊原因引起的波動(dòng),而指數(shù)加權(quán)移動(dòng)平均值(EWMA)-累積和類型控制圖(CUSUM)則在過(guò)程中由特殊原因引起的波動(dòng)數(shù)量中等和少量時(shí)更有效。我們常常假設(shè)參數(shù)是已知的或通過(guò)IC采樣被正確估計(jì),并且數(shù)據(jù)沒(méi)有異常值。因此,通過(guò)這些假設(shè),可以利用均值和方差(或標(biāo)準(zhǔn)偏差)控制圖完成位置和比例參數(shù)的監(jiān)測(cè)。但實(shí)際上,這些假設(shè)并不正確,過(guò)程偶爾會(huì)有異常。此外,利用關(guān)于輔助變量的信息有助于提高估計(jì)器的精度,并因此提高制圖結(jié)構(gòu)。本文致力于研究一些改進(jìn)的控制圖表結(jié)構(gòu),其作為插件用于統(tǒng)計(jì)過(guò)程控制(SPC)工具包。文中提出的圖標(biāo)結(jié)構(gòu)是基于一些輔助特性的信息,可用于設(shè)計(jì)位置和尺度參數(shù)。文中方法的性能表現(xiàn)通過(guò)一些有用的度量來(lái)評(píng)估,譬如平均運(yùn)行鏈長(zhǎng)(ARL),額外二次損失(EQL),相對(duì)平均運(yùn)行鏈長(zhǎng)(RARL),性能比較指數(shù)(PCI)。我們分別在正態(tài)、對(duì)數(shù)正態(tài)以及學(xué)生t分布(有和沒(méi)有噪聲污染)過(guò)程中利用簡(jiǎn)單隨機(jī)抽樣度量其表現(xiàn)能力。本文利用蒙特卡羅模擬比較了不同的控制圖策略,并做了一些真實(shí)數(shù)據(jù)的分析,以突出其實(shí)際應(yīng)用價(jià)值。
【學(xué)位單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2018
【中圖分類】:O213
【文章目錄】:
Preface
Abstract
摘要
List of Abbreviations and Acronyms
1 Introduction
1.1 Definition of a process
1.2 Statistical process control (SPC)
1.3 Control charts
1.4 Types of control charts
1.4.1 Shewhart control charts
1.4.2 EWMA control charts
1.4.3 CUSUM control charts
1.5 Performance measures
1.5.1 Average run length (ARL)
1.5.2 Extra quadratic loss (EQL)
1.5.3 Relative average run length (RARL)
1.5.4 Performance comparison index (PCI)
1.6 Literature Review
1.6.1 Improved EWMA control charts
1.6.2 Improved CUSUM control charts
1.6.3 Combined/mixed structure based control charts
1.6.4 Auxiliary information based control charts
1.7 Motivation and problem statement
1.8 Objective of the study
1.9 Organization of the thesis
2 On Auxiliary Information Based Improved EWMA Median Control Charts
2.1 Median estimators
2.2 Proposed EWMA structure
2.3 Comparative analysis
2.3.1 Comparison of control charts under uncontaminated environment
2.3.2 Comparison of control charts under contaminated environments
2.4 Illustrative example
2.4.1 Simulated illustration
2.4.2 Case study
2.5 Concluding remarks
3 New Auxiliary Information Based Cumulative Sum Median Control Charts forLocation Monitoring
3.1 Proposed CUSUM control charting structure
3.2 Simulation procedure
3.3 Comparative analysis
3.3.1 Comparison of control charts in an uncontaminated scenario
3.3.2 Comparison of control charts in a contaminated scenario
3.4 Case study
3.5 Concluding remarks
4 On a Class of Mixed EWMA-CUSUM Median Control Charts
4.1 Proposed mixed EWMA-CUSUM median structure
4.2 Simulation algorithm
4.3 Results and discussion
4.3.1 Comparison of control charts under uncontaminated environment
4.3.2 Comparison of control charts under contaminated environment
4.4 Case study
4.5 Concluding remarks
5 New Interquartile Range EWMA Control Charts
5.1 Quartiles, R and S estimators
5.2 Design structures of EWMA R,S and proposed IQR control charts
5.3 Simulation procedure
5.4 Comparison and results discussion
5.4.1 Comparison of control charts under uncontaminated environment
5.4.2 Comparison of control charts under contaminated environment
5.5 Case study
5.6 Concluding remarks
6 New dual auxiliary information based EWMA control chart
6.1 Usual, difference, and regression-type estimators
6.1.1 Usual estimator under SRS
6.1.2 Difference and Regression-type estimators
6.2 Existing design structures
6.2.1 EWMAC control chart structure
6.2.2 EWMAD control chart structure
6.3 Proposed control chart structures
6.4 Results and discussion
6.5 Real life example
6.6 Concluding remarks
7 Summary, Conclusions and Future Recommendations
7.1 Summary and conclusions
7.2 Future work recommendations
References
Appendix A (Supplementary tables)
Research Projects and Publications during PhD Period
Acknowledgement
Author Information
本文編號(hào):2874638
【學(xué)位單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位年份】:2018
【中圖分類】:O213
【文章目錄】:
Preface
Abstract
摘要
List of Abbreviations and Acronyms
1 Introduction
1.1 Definition of a process
1.2 Statistical process control (SPC)
1.3 Control charts
1.4 Types of control charts
1.4.1 Shewhart control charts
1.4.2 EWMA control charts
1.4.3 CUSUM control charts
1.5 Performance measures
1.5.1 Average run length (ARL)
1.5.2 Extra quadratic loss (EQL)
1.5.3 Relative average run length (RARL)
1.5.4 Performance comparison index (PCI)
1.6 Literature Review
1.6.1 Improved EWMA control charts
1.6.2 Improved CUSUM control charts
1.6.3 Combined/mixed structure based control charts
1.6.4 Auxiliary information based control charts
1.7 Motivation and problem statement
1.8 Objective of the study
1.9 Organization of the thesis
2 On Auxiliary Information Based Improved EWMA Median Control Charts
2.1 Median estimators
2.2 Proposed EWMA structure
2.3 Comparative analysis
2.3.1 Comparison of control charts under uncontaminated environment
2.3.2 Comparison of control charts under contaminated environments
2.4 Illustrative example
2.4.1 Simulated illustration
2.4.2 Case study
2.5 Concluding remarks
3 New Auxiliary Information Based Cumulative Sum Median Control Charts forLocation Monitoring
3.1 Proposed CUSUM control charting structure
3.2 Simulation procedure
3.3 Comparative analysis
3.3.1 Comparison of control charts in an uncontaminated scenario
3.3.2 Comparison of control charts in a contaminated scenario
3.4 Case study
3.5 Concluding remarks
4 On a Class of Mixed EWMA-CUSUM Median Control Charts
4.1 Proposed mixed EWMA-CUSUM median structure
4.2 Simulation algorithm
4.3 Results and discussion
4.3.1 Comparison of control charts under uncontaminated environment
4.3.2 Comparison of control charts under contaminated environment
4.4 Case study
4.5 Concluding remarks
5 New Interquartile Range EWMA Control Charts
5.1 Quartiles, R and S estimators
5.2 Design structures of EWMA R,S and proposed IQR control charts
5.3 Simulation procedure
5.4 Comparison and results discussion
5.4.1 Comparison of control charts under uncontaminated environment
5.4.2 Comparison of control charts under contaminated environment
5.5 Case study
5.6 Concluding remarks
6 New dual auxiliary information based EWMA control chart
6.1 Usual, difference, and regression-type estimators
6.1.1 Usual estimator under SRS
6.1.2 Difference and Regression-type estimators
6.2 Existing design structures
6.2.1 EWMAC control chart structure
6.2.2 EWMAD control chart structure
6.3 Proposed control chart structures
6.4 Results and discussion
6.5 Real life example
6.6 Concluding remarks
7 Summary, Conclusions and Future Recommendations
7.1 Summary and conclusions
7.2 Future work recommendations
References
Appendix A (Supplementary tables)
Research Projects and Publications during PhD Period
Acknowledgement
Author Information
本文編號(hào):2874638
本文鏈接:http://sikaile.net/kejilunwen/yysx/2874638.html
最近更新
教材專著