時(shí)滯耦合系統(tǒng)非線性動(dòng)力學(xué)的研究進(jìn)展
[Abstract]:With the deep understanding of the objective laws of nature, the refinement and complexity of engineering system design are also increasing. In the design process of many coupled dynamic systems, the dynamic behavior caused by the time delay of the coupling process should be considered, which comes from the coupling process with the sensing system, the actuating system and the control system. Coupled time delay also widely exists in traffic, system biology, electronic communication, neural and information network and other technologies. In this paper, the research progress of coupling delay-induced dynamics is reviewed from four aspects: the complex dynamic mechanism of time-delay-centered coupling system, the experimental basis and implementation of time-delay stabilization coupling system, the dynamics of fast-slow time-delay coupled system and the synchronization and desynchronization of time-delay neural network. This paper mainly introduces the high codimensional bifurcation singularity induced by coupling delay in time-delay coupled systems and a new quantitative analysis method, the canonical calculation of neutral delay differential equations, the identification method and experimental implementation of coupled time-delay and nonlinear parameters in nonlinear systems with coupled delays, the relaxation oscillations of fast-slow and time-delay coupled systems, and the synchronous mode switching of network systems induced by coupling delays. Then, in the aspect of application, the flutter induced by coupling time delay and its mechanism in lathe grinding process, the high residual dimension bifurcation and complex dynamics induced by coupling time delay in neural network system with inertia term and coupling time delay, the design and experimental realization of time delay dynamic vibration absorber and vibration isolation device are introduced in detail. Finally, some problems worthy of attention in the near future are prospected from the general theory and engineering application of coupled time-delay systems.
【作者單位】: 同濟(jì)大學(xué)航空航天與力學(xué)學(xué)院;
【基金】:國家自然科學(xué)基金資助項(xiàng)目(11572224,11502168,11032009)
【分類號(hào)】:O175
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 肖世富,陳濱;一類剛—柔耦合系統(tǒng)柔體模態(tài)分析的特征[J];中國空間科學(xué)技術(shù);1998年04期
2 馮濱魯;郭婷婷;;(2+1)維KdV方程的Gramm解及其pfaffian化[J];濰坊學(xué)院學(xué)報(bào);2008年06期
3 繆雪晴;丁衛(wèi);;非恒同耦合系統(tǒng)的同步[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2013年19期
4 沈連山,王一平;機(jī)電耦合系統(tǒng)狀態(tài)分析的新方法[J];阜新礦業(yè)學(xué)院學(xué)報(bào)(自然科學(xué)版);1997年01期
5 高靜;;帶有阻尼項(xiàng)的二階奇異耦合系統(tǒng)的周期解[J];首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年04期
6 徐景滿;杜韌;劉習(xí)軍;;圓柱形彈性殼液耦合系統(tǒng)模態(tài)的有限元法分析[J];北華航天工業(yè)學(xué)院學(xué)報(bào);2007年04期
7 金伏生;某類連續(xù)介質(zhì)力學(xué)一些基本問題的一種實(shí)用統(tǒng)一理論[J];科學(xué)通報(bào);1989年13期
8 梁振輝;蘇木標(biāo);王業(yè)敏;;車橋耦合系統(tǒng)動(dòng)力方程的推導(dǎo)[J];青島建筑工程學(xué)院學(xué)報(bào);1992年01期
9 陳士華,杜乃林;Poincaré方程的線性差耦合系統(tǒng)[J];數(shù)學(xué)物理學(xué)報(bào);1998年S1期
10 劉習(xí)軍;徐景滿;劉振宇;;矩形彈性殼液耦合系統(tǒng)模態(tài)的有限元法分析[J];機(jī)床與液壓;2007年06期
相關(guān)會(huì)議論文 前2條
1 王霞;陳芳啟;;弦-梁耦合系統(tǒng)的穩(wěn)定性與分岔分析[A];第十二屆全國非線性振動(dòng)暨第九屆全國非線性動(dòng)力學(xué)和運(yùn)動(dòng)穩(wěn)定性學(xué)術(shù)會(huì)議論文集[C];2009年
2 韓秀萍;陸君安;;脈沖耦合系統(tǒng)的同步[A];2006全國復(fù)雜網(wǎng)絡(luò)學(xué)術(shù)會(huì)議論文集[C];2006年
相關(guān)博士學(xué)位論文 前2條
1 張春梅;基于圖論方法的耦合系統(tǒng)的穩(wěn)定性和同步性分析[D];哈爾濱工業(yè)大學(xué);2015年
2 郭宇瀟;時(shí)滯耦合振子系統(tǒng)的分支分析和同步問題[D];哈爾濱工業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前5條
1 吳恩禮;外部干擾下的兩類耦合系統(tǒng)同步與控制[D];重慶師范大學(xué);2016年
2 劉艷;具有延遲和時(shí)變耦合結(jié)構(gòu)的隨機(jī)耦合系統(tǒng)的穩(wěn)定性分析[D];哈爾濱工業(yè)大學(xué);2016年
3 劉娟;兩類雙曲型偏微分方程耦合系統(tǒng)解的穩(wěn)定性研究[D];山西大學(xué);2016年
4 陳天睿;具有反應(yīng)擴(kuò)散項(xiàng)耦合系統(tǒng)的穩(wěn)定性與同步性研究[D];哈爾濱工業(yè)大學(xué);2014年
5 連永龍;一類具有雙時(shí)滯的耦合系統(tǒng)的動(dòng)力學(xué)性質(zhì)[D];哈爾濱工業(yè)大學(xué);2014年
,本文編號(hào):2516295
本文鏈接:http://sikaile.net/kejilunwen/yysx/2516295.html