一些給定階數(shù)的七度對稱圖
[Abstract]:If the automorphism group of a graph acts on its arc set, it is called symmetric. In this paper, the application of group theory in graph theory is studied. the object of group theory is graph with some symmetry. the main method is to study the symmetry of graph by automorphism group of graph. The main work of this paper is to classify and count several kinds of seven-degree symmetric graphs with a given order. In the first chapter, the research background and significance of symmetric graph are given, and then the concepts and Lemma related to symmetric graph are briefly introduced. In chapter 2, we give a classification of 7-degree symmetric graphs with twice the square order of prime numbers. It is proved that only one symmetric graph of order 8 is a complete graph K8. if the order is greater than 8, there are four coset graphs of PSU (3, 5) and a standard double covering of a special commutative Cayley directed graph of square order of prime number. In chapter 3, we give all the 7-degree connected symmetric graphs of order 2pq, where p, Q is a different prime number. When Q = 2, there is only one connected symmetric graph of order 4p, which is K8. for odd prime numbers p and Q, the 7-degree connected 1-regular graph with solvable automorphism group is an infinite class, and there are four scattered graphs with unsolvable automorphism group, which are 1, 2, 3-arc transitive respectively. In particular, one of the four scattered graphs is primitive and the other two are biprimitive. In chapter 4, we give all the 7-degree connected symmetric graphs of order 4pq, where p, Q is a different prime number. When Q = 2, there are and only two 7-degree connected symmetric graphs of order 8p. For odd prime numbers p and Q, there are eight scattered 1-transitive 7-degree connected graphs with unsolvable automorphism groups. In particular, two of these eight scattered graphs are standard double covers of 7-degree symmetric graphs of order 78.
【學位授予單位】:河南師范大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:O157.5
【相似文獻】
相關期刊論文 前10條
1 劉波;;繪制對稱圖的又一方法[J];生物學通報;1955年12期
2 路在平,王長群,徐明曜;6p~2階的三度半對稱圖[J];中國科學(A輯:數(shù)學);2003年03期
3 王福榮;;素數(shù)階對稱圖的齊分解[J];首都師范大學學報(自然科學版);2006年01期
4 成會文;;關于4p階3度對稱圖的一點注記[J];科學技術與工程;2009年10期
5 化小會;馮衍全;;8p階5度對稱圖[J];北京交通大學學報;2011年03期
6 郭松濤;馮衍全;;3p~2階4度對稱圖[J];北京交通大學學報;2011年06期
7 王麗;;一類半對稱圖的構造[J];數(shù)學的實踐與認識;2012年01期
8 王汝楫;6p階可解對稱圖的分類[J];數(shù)學研究與評論;1995年04期
9 杜少飛;兩類半對稱圖的構造[J];科學通報;1998年03期
10 陳進之;關于3P階對稱圖的問題[J];數(shù)學理論與應用;1999年02期
相關博士學位論文 前4條
1 李艷濤;幾類對稱圖的分類與計數(shù)[D];北京交通大學;2010年
2 韓華;容許本原群的半對稱圖[D];南開大學;2014年
3 化小會;幾類邊傳遞圖[D];北京交通大學;2011年
4 王福榮;pq階不可定向正則地圖與第二小階雙本原半對稱圖的分類[D];首都師范大學;2006年
相關碩士學位論文 前10條
1 陳利;一些給定階數(shù)的七度對稱圖[D];河南師范大學;2017年
2 劉玉芹;具有非交換單群傳遞作用的七度對稱圖[D];北京交通大學;2017年
3 蔣寧;關于4p~n階3度對稱圖[D];北京交通大學;2010年
4 韓華;6p~2階的素數(shù)度半對稱圖[D];南開大學;2011年
5 邵文武;階為12,,20的對稱圖的分類[D];首都師范大學;2000年
6 白偉;4pq階的3度連通半對稱圖[D];鄭州大學;2004年
7 黃兆紅;四倍素數(shù)冪階的五度對稱圖[D];云南大學;2013年
8 吳辭旋;階為2倍素數(shù)冪的五度對稱圖[D];云南大學;2013年
9 吳小芳;關于對稱圖的一些注記[D];廣東工業(yè)大學;2007年
10 秦丹;6pq階5度對稱圖[D];云南大學;2013年
本文編號:2510274
本文鏈接:http://sikaile.net/kejilunwen/yysx/2510274.html