雙因素隨機(jī)波動(dòng)率跳擴(kuò)散模型下復(fù)合期權(quán)定價(jià)
[Abstract]:Option pricing has always been one of the core issues in the field of financial mathematics and financial engineering. With the rapid development of financial markets and the love of financial companies and investors for complex financial derivatives, many financial institutions continue to launch new derivatives, so new options (also known as odd options) have emerged and developed rapidly. Compound option is one of the most common and widely used singular options. It is an option for an option, so there are two due dates and two execution prices. Because of the influence of two maturity dates, compared with the standard option, the compound option is more sensitive to volatility, which makes the judgment of its value more complex. However, in the complex and changeable financial market and the fast and slow economic environment, the traditional Black-Scholes model, jump diffusion model and single factor random volatility model are no longer applicable. Therefore, this paper proposes to study the compound option under the two factor random volatility jump diffusion model. From the point of view of many factors, this paper comprehensively considers the fluctuation caused by long-term risk and temporary risk in financial market and the characteristics of fast and slow economic development, and synthesizes the advantages of jump diffusion model and random volatility model, and establishes a two-factor random volatility jump diffusion model. Under this model, the standard European compound option pricing formula is derived by using Feynman-Kac theorem, Ito formula, joint eigenfunction of multidimensional random variables and Fourier inverse transformation. By comparing the variation of compound option price with S0 under nine kinds of models, this paper analyzes the implied volatility of two different maturity dates of short-term and long-term, and the influence of jump intensity and correlation coefficient of short-term and long-term volatility on the price of compound option. It is found that the model can better capture the time-varying characteristics of term structure of implied volatility. The correlation coefficient of long-term volatility has a positive impact on the price of composite options, and the price of composite options fluctuates violently under the short-term volatility, while the price of composite options tends to be more stable under the long-term volatility. Secondly, under the model of this paper, the single-period compound option is extended to the pricing of multi-period compound option, and the pricing formula of multi-period compound option is derived by using the joint characteristic function of multi-dimensional random variables and the method of multi-dimensional Fourier transform. Through the comparison of the prices of multi-period composite options under Merton model, SVIJ model and this model, this paper analyzes the influence of short-term volatility on the price of multi-period composite options. It is found that the addition of jump term and the consideration of two-factor random volatility have great influence on the pricing results of multi-period composite options, and the related parameters of short-term volatility will have different impacts on the price of multi-period composite options. Therefore, in the actual financial market, investors should not only pay attention to the long-term volatility, but also pay attention to the stock price volatility caused by the short-term volatility and its related parameters. The study of compound option pricing under the two-factor random volatility jump-diffusion model is more suitable for the real financial market, which provides a more powerful theoretical basis and method for the study of compound option pricing, and also provides a reference for risk managers to make more effective judgment.
【學(xué)位授予單位】:廣西師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F830.9;O211.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 龔樸,何志偉;復(fù)合期權(quán)理論方法及應(yīng)用最新研究進(jìn)展[J];管理學(xué)報(bào);2004年03期
2 吳金美;金治明;凌曉冬;;多階段復(fù)合期權(quán)的定價(jià)方法(英文)[J];工程數(shù)學(xué)學(xué)報(bào);2009年05期
3 涂淑珍;李時(shí)銀;;違約風(fēng)險(xiǎn)市場價(jià)格的復(fù)合期權(quán)的定價(jià)模型與解法[J];廈門大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
4 張峰;駱樺;章靜靜;;在技術(shù)不確定條件下對(duì)乙肝疫苗研發(fā)評(píng)價(jià)的復(fù)合期權(quán)法[J];佳木斯教育學(xué)院學(xué)報(bào);2013年09期
5 曹艷,孫彥彬,張博,劉永建;石油工程項(xiàng)目投資決策中復(fù)合期權(quán)模型的應(yīng)用[J];大慶石油學(xué)院學(xué)報(bào);2003年04期
6 程中華;寧偉;;復(fù)合期權(quán)的定價(jià)及其在風(fēng)險(xiǎn)投資決策中的應(yīng)用[J];泰山學(xué)院學(xué)報(bào);2009年06期
7 劉明月;容躍堂;;基于跳-擴(kuò)散過程的多階段因果復(fù)合期權(quán)定價(jià)[J];寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年04期
8 韋鑄娥;;跳擴(kuò)散模型下雙幣種復(fù)合期權(quán)定價(jià)[J];凱里學(xué)院學(xué)報(bào);2013年03期
9 張宏哲;李英龍;;復(fù)合期權(quán)模型在礦業(yè)工程投資決策中的應(yīng)用[J];價(jià)值工程;2006年08期
10 畢守鋒;李岱松;馬欣;;復(fù)合期權(quán)方法在項(xiàng)目評(píng)估中的應(yīng)用[J];科研管理;2008年03期
相關(guān)會(huì)議論文 前1條
1 唐蘋;;復(fù)合期權(quán)在3G項(xiàng)目投資評(píng)價(jià)中的應(yīng)用[A];第九屆中國青年信息與管理學(xué)者大會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前1條
1 何志偉;復(fù)合期權(quán)與路徑相關(guān)期權(quán)定價(jià)理論模型、數(shù)值模擬及應(yīng)用研究[D];華中科技大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 宮文秀;復(fù)合期權(quán)的定價(jià)及應(yīng)用研究[D];暨南大學(xué);2016年
2 郭亞敏;三叉樹模型定價(jià)實(shí)物復(fù)合期權(quán)及其應(yīng)用[D];河北師范大學(xué);2010年
3 熊慶;復(fù)合期權(quán)定價(jià)與多階段投資決策[D];華南理工大學(xué);2010年
4 周清波;復(fù)合期權(quán)的定價(jià)研究[D];湘潭大學(xué);2011年
5 田野;多階段投資決策的復(fù)合期權(quán)模型及應(yīng)用[D];哈爾濱工業(yè)大學(xué);2007年
6 宮維均;樹圖技術(shù)在復(fù)合實(shí)物期權(quán)定價(jià)過程中的應(yīng)用研究[D];吉林大學(xué);2007年
7 徐珍珍;基于BSB方程下復(fù)合期權(quán)定價(jià)問題的研究[D];北方工業(yè)大學(xué);2012年
8 佟威;基于等價(jià)鞅測度的非標(biāo)準(zhǔn)期權(quán)和投資組合的研究[D];中央民族大學(xué);2010年
9 董翠玲;Agliardi Elettra猜測的證明及其在跳—擴(kuò)散過程下的推廣[D];新疆大學(xué);2005年
10 劉明月;因果復(fù)合期權(quán)定價(jià)模型及應(yīng)用[D];西安工程大學(xué);2012年
,本文編號(hào):2507036
本文鏈接:http://sikaile.net/kejilunwen/yysx/2507036.html