一類永磁同步電機(jī)動(dòng)力學(xué)模型的穩(wěn)定性和分岔分析 Stability and Bifurcation Analysis fo
本文關(guān)鍵詞:船舶電力推進(jìn)雙三相永磁同步電機(jī)的數(shù)學(xué)模型和仿真,由筆耕文化傳播整理發(fā)布。
Dynamical Systems and Control 2015
一類永磁同步電機(jī)動(dòng)力學(xué)模型的穩(wěn)定性和分岔分析
Stability and Bifurcation Analysis for the Dynamical Model of Special Permanent Magnet Synchronous Motor
DOI: 10.12677/DSC.2015.44012, PP. 93-101
劉珊珊, 周良強(qiáng), 陳芳啟
Keywords: Permanent Magnet Synchronous Motor&searchField=keyword">永磁同步電機(jī),穩(wěn)定性,Hopf分岔
Permanent Magnet Synchronous Motor, Stability, Hopf Bifurcations
Full-Text Cite this paper Add to My Lib
Abstract:
這篇文章研究了一類永磁同步電機(jī)系統(tǒng)的非線性動(dòng)力學(xué)特性。給出了該系統(tǒng)的所有平衡點(diǎn)及其穩(wěn)定性,并利用Hopf分岔定理和第一李雅普諾夫系數(shù)研究了系統(tǒng)產(chǎn)生Hopf分岔的參數(shù)條件和類型。最后利用Runge-Kutta方法對系統(tǒng)進(jìn)行數(shù)值模擬,給出了系統(tǒng)的相圖,,驗(yàn)證了理論分析的結(jié)果。得出當(dāng)c > c0時(shí),系統(tǒng)出現(xiàn)次臨界分岔。
Nonlinear dynamic characteristics of the permanent magnet synchronous motor system are inves-tigated in this paper. All the equilibriums of the system and their stabilities are studied. Using the Hopf bifurcation theorem and the first Lyapunov coefficient, the conditions and the type of Hopf bifurcations for the system are investigated. With the Runge-Kutta method, the phase portraits of the system are given, which verify the analytical results.
[1] 中研普華永磁電機(jī)行業(yè)分析專家 (2015) 2015-2020年中國永磁電機(jī)行業(yè)市場深度調(diào)研與投資前景分析報(bào)告.
[2] 郭慶鼎, 孫宜標(biāo), 王麗梅 (2006) 現(xiàn)代永磁電動(dòng)機(jī)交流伺服系統(tǒng). 中國電力出版社, 北京, 11 p.
[3] 李永東, 梁艷 (2002) 高性能交流永磁同步電機(jī)伺服系統(tǒng)現(xiàn)狀. 中國電工技術(shù)學(xué)會(huì)電力電子學(xué)會(huì)第八屆學(xué)術(shù)年會(huì)論文集, 深圳, 1108, 1149.
[4] Zhong, L., Rahman, M.E., Hu, W.Y., Lira, K.W. and Rahman, M.A. (1999) A direct toque controller for permanent magnet synchronous motor drives. Energy Conversion, 14, 637-642.
[5] 馮江華 (2010) 軌道交通永磁同步牽引系統(tǒng)研究. 機(jī)車電傳動(dòng), 5, 15-18.
[6] 溫文強(qiáng) (2008) 永磁同步電機(jī)在電梯技術(shù)上的應(yīng)用. 機(jī)械與電氣, 3, 69-71.
[7] 陳巨濤, 郭焱, 鄭華耀 (2006) 船舶電力推進(jìn)雙三相永磁同步電機(jī)的數(shù)學(xué)模型和仿真. 2006年電力系統(tǒng)自動(dòng)化學(xué)術(shù)交流研討會(huì), 廈門, 中國電機(jī)工程學(xué)會(huì), 654-656.
[8] 閆耀明, 范瑜, 王志忠 (2002) 永磁同步電機(jī)風(fēng)力發(fā)電系統(tǒng)的自尋優(yōu)控制. 電工技術(shù)學(xué)報(bào), 6, 83-84.
[9] 唐麗嬋, 齊亮 (2011) 永磁同步電機(jī)的應(yīng)用現(xiàn)狀與發(fā)展趨勢. 裝備機(jī)械, 1, 8.
[10] 鄒國堂, 王政, 程明, 著 (2009) 混沌電機(jī)驅(qū)動(dòng)及其應(yīng)用. 科學(xué)出版社, 北京, 1-2, 54-60.
[11] Hemati, N. (1994) Strange attractors in brushless DC motors. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 41, 40-45.
[12] Li, Z., Park, J.B., et al. (2002) Bifurcations and chaos in a permanent-magnet synchronous motor. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49, 383-387.
[13] Alligood, K.T., Sauer, T.D. and Yorke, J.A. (1996) Chaos: An introduction to dynamical systems. Springer-Verlag, New York, 106-109.
[14] Yu, Y.G. and Zhang, S.C. (2004) Hopf bifurcation analysis of the Lü system. Chaos, Solutions and Fractals, 21, 1217- 1220.
Full-Text
本文關(guān)鍵詞:船舶電力推進(jìn)雙三相永磁同步電機(jī)的數(shù)學(xué)模型和仿真,由筆耕文化傳播整理發(fā)布。
本文編號:249287
本文鏈接:http://sikaile.net/kejilunwen/yysx/249287.html