定區(qū)間上某些特定三角和的上界估計(jì)
發(fā)布時(shí)間:2019-05-28 08:52
【摘要】:本課題主要利用Vaughan恒等式中的分拆的方法,在某種特定的區(qū)間內(nèi)對(duì)(?)和(?)這兩種特定形式的三角和分別做出了一個(gè)定量和定性的上界估計(jì),從而得到了以下兩條重要結(jié)論,定理1設(shè)實(shí)數(shù)α =α/q +θ/q2滿足α≥0, (a,q)=1,1,|θ|≤1,整數(shù)x,.y滿足3≤y≤x/(logx).令(?)為 Mangoldt 函數(shù)那么有定理2設(shè)(?)是定義在全模群Γ = SL(z)上權(quán)為k的全純尖形式,(?),則
[Abstract]:In this paper, we mainly use the method of split in Vaughan identity to pair (?) And (?) The trigonometric sum of these two specific forms makes a quantitative and qualitative upper bound estimation respectively, and the following two important conclusions are obtained. Theorem 1 shows that the real number 偽 = 偽 / Q theta / Q2 satisfies 偽 鈮,
本文編號(hào):2486917
[Abstract]:In this paper, we mainly use the method of split in Vaughan identity to pair (?) And (?) The trigonometric sum of these two specific forms makes a quantitative and qualitative upper bound estimation respectively, and the following two important conclusions are obtained. Theorem 1 shows that the real number 偽 = 偽 / Q theta / Q2 satisfies 偽 鈮,
本文編號(hào):2486917
本文鏈接:http://sikaile.net/kejilunwen/yysx/2486917.html
最近更新
教材專著