全空間中一類橢圓型方程組解的存在性
發(fā)布時(shí)間:2019-05-28 08:06
【摘要】:本文主要討論了如下的一類橢圓型方程組:其中g(shù)是連續(xù)函數(shù),α 1,β 1,α+β ∈ (2,2*),2* =2N/N-2(N≥3)表示臨界的Sobolev指數(shù).本文應(yīng)用變分法證明了如下結(jié)論:定理若α 1,β 1, α + β ∈ (2,2*),且連續(xù)函數(shù)g滿足0 δ := infRN g supRN q =: γ +∞, lim|x|→+∞q(x) = γ,那么橢圓型方程組(*)至少存在一個(gè)非平凡的非負(fù)弱解.
[Abstract]:In this paper, we mainly discuss the following class of elliptical equations: where g is a continuous function, 偽 1, 尾 1, 偽 尾 鈭,
本文編號(hào):2486886
[Abstract]:In this paper, we mainly discuss the following class of elliptical equations: where g is a continuous function, 偽 1, 尾 1, 偽 尾 鈭,
本文編號(hào):2486886
本文鏈接:http://sikaile.net/kejilunwen/yysx/2486886.html
最近更新
教材專著