關于偽單調(diào)平衡問題和不動點問題的粘滯-次梯度方法
發(fā)布時間:2019-05-23 01:27
【摘要】:本文介紹了一個新的逼近偽單調(diào)平衡問題的解和廣義漸近λ-嚴格偽壓縮映象不動點的粘滯-次梯度方法,在Hilbert空間中建立了關于偽單調(diào)平衡問題和一簇廣義漸近λ-嚴格偽壓縮映象公共不動點的強收斂定理,并在收斂性分析中去掉了映象的一致Lipschitz連續(xù)性條件.
[Abstract]:In this paper, we introduce a new solution to the pseudo-monotone equilibrium problem and a viscous-subgradient method for the fixed point of a generalized asymptotically 位-strictly pseudo-contraction mapping. In this paper, we establish a strong convergence theorem for pseudo-monotone equilibrium problems and a family of generalized asymptotically strictly pseudo-contractive maps in Hilbert spaces, and remove the uniform Lipschitz continuity conditions for maps in convergence analysis.
【作者單位】: 重慶工商大學數(shù)學與統(tǒng)計學院;
【基金】:國家自然科學基金項目(No.11471059) 重慶市前沿與應用基礎研究項目(No.cstc2016jcyjA0101,No.cstc2014jcyjA00037) 重慶市教委科技研究項目(No.KJ1500623,No.KJ1500634)
【分類號】:O177.91
[Abstract]:In this paper, we introduce a new solution to the pseudo-monotone equilibrium problem and a viscous-subgradient method for the fixed point of a generalized asymptotically 位-strictly pseudo-contraction mapping. In this paper, we establish a strong convergence theorem for pseudo-monotone equilibrium problems and a family of generalized asymptotically strictly pseudo-contractive maps in Hilbert spaces, and remove the uniform Lipschitz continuity conditions for maps in convergence analysis.
【作者單位】: 重慶工商大學數(shù)學與統(tǒng)計學院;
【基金】:國家自然科學基金項目(No.11471059) 重慶市前沿與應用基礎研究項目(No.cstc2016jcyjA0101,No.cstc2014jcyjA00037) 重慶市教委科技研究項目(No.KJ1500623,No.KJ1500634)
【分類號】:O177.91
【相似文獻】
相關期刊論文 前10條
1 韓云芷;張秋紅;;關于連續(xù)函數(shù)的不動點[J];保定師范專科學校學報;2007年02期
2 江嘉禾;多值映象的本尛不動點[J];數(shù)學學報;1961年04期
3 蔡爾,
本文編號:2483473
本文鏈接:http://sikaile.net/kejilunwen/yysx/2483473.html
最近更新
教材專著